DYNAMIC MEMORY
THE BIG FOUR

Problem Solving with Computers-| C++

Read the syllabus. Know what’s required. Know how to get help.

L
Learning Goals (Last Week)

* Review basics of classes

* Defining classes and declaring objects

* Access specifiers: private, public

- Different ways of initializing objects and when to use each:
* Default constructor
- Parametrized constructor
- Parameterized constructor with default values
- Initializer lists

L
Learning Goals (today)

* Develop a mental model of how programs are represented in memory.
« |dentify situations when data needs to be created on the heap vs. stack

+ Identify the big four and when you need to implement these vs. use the default
versions provided by C++

L
C++ Program’s Memory Regions

Code memory

A WO N -

Static memory

3000
3001

Stack

3200
3201
3202
3203

Heap

9400
9401
9402

The code regions store program instructions. myGlobal is a global variable and is stored in the
static memory region. Code and static regions last for the entire program execution.

L
C++ Program’s Memory Regions

Code memo
#include <iostream> ry

using namespace std; . « Stack: Segment of memory managed
[FrosTan s rered on code menery 3 automatically using a Last in First Out
int myGlobal = 33; // In static memor . .
- ’ 4 (LIFO) principle.
v°1gnbéy:1;£c(><):al{.; // On stack ~_Static memory
myLocal = 999; 3000 .
| cout << * v << mpmoca, o * Heap: Segment of memory managed by the
o programmer
int main Stack
tint mi(/)Int{:; // On stack 3200
int* myPtr = nullptr; // On stack
myInt = 555; 3201 » Data created on the heap stays there
myPtr = new int; // In heap 3202
*m r = 222; 3203
coZEt<< *myPtr << " " << myInt; - FOREVER OI'
delete myPtr; // Deallocated from heap Heap
G 2 ac rows, en shrinks 9400 . s b
WWECE(7 [/ SERck grous, then sheiak 0401 — until the programmer explicitly deletes it
return 0;
} 9402

The code regions store program instructions. myGlobal is a global variable and is stored in the
static memory region. Code and static regions last for the entire program execution.

L
Heap vs. stack

1 #include <iostream>

2 using namespace std;

3

4 intx createAnIntArray(int len){

int arr([len];
return arr;

O 00 d O Ul

¥

Does the above function correctly return an array of integers?
A. Yes
B. No

The Big Four

1. Constructor

2. Destructor

3. Copy Constructor
4. Copy Assignment

L
Constructor and Destructor

Every class has the following special methods:

» Constructor: Called right AFTER new objects are created in
memory

» Destructor: Called right BEFORE an object is deleted from
memory

The compiler automatically generates default versions, but you
can override them

void foo(){
complex p;
complex* q = new complex;
complex w{1l0, 5};

How many times is the constructor called above?

A. Never

B. Once

C. Two times
D. Three times

void foo()({
complex p;
complex *q = new complex;

The destructor of which of the objects is called after foo() returns?

A.p

B.(

C.*q

D. None of the above

Copy constructor

- Creates a new object and initializes it using an existing object

In which of the following cases is the copy constructor called?

A. complex pl;
complex p2{1, 2};

B. complex pl{l, 2};
complex p2{pl};

C. complex *pl = new complex{l, 2};
complex p2 = *pl;

B&C
A, B&C

1 O

Copy assignment

- Default behavior: Copies the member variables of one object into another

complex pl{l, 2}; // Parametrized constructor
complex p2;

p2 = pl; // Copy assignment function is called

double foo(complex p){
return p.magnitude();

}

int main() {
complex q{l, 2};
foo(q);
}

Which of the following special methods is called as a result of calling foo?
A. Parameterized constructor

B. Copy constructor

C. Copy Assignment

D. Destructor

Constant pointers and pointers to constants

const charx pl;
charx const p2;

const charx const p3;

L
Operator Overloading

We would like to be able to compare two objects of the class using the
following operators

and possibly others

bool operator==(const complex & c1, const complex &c2){
return c1.real==c2.real && c1.imag == c2.imag;

L
Summary

» Classes have member variables and member functions (method).
An object is a variable where the data type is a class.

* You should know how to declare a new class type, how to
implement its member functions, how to use the class type.

* Frequently, the member functions of an class type place
information in the member variables, or use information that's
already in the member variables.

* New functionality may be added using non-member functions,
friend functions, and operator overloading (next lectures)

Next time

- Linked Lists and the rule of three

