
 
BINARY SEARCH TREES

Problem Solving with Computers-II

Trees
!2

 A tree has following general properties:
 • One node is distinguished as a root;
 • Every node (exclude a root) is connected

by a directed edge from exactly one other
node;

 A direction is: parent -> children
• Leaf node: Node that has no children

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

!3

Binary Search Trees
• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?

!4

Sorted arrays vs Binary Search Trees (BST)

Operations
Min
Max
Successor
Predecessor
Search
Insert
Delete
Print elements in order

Binary Search Tree – What is it?

42

32

12

45

41 50

!6

Do the keys have to be integers?

• Each node:
• stores a key (k)
• has a pointer to left child, right child

and parent (optional)
• Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

BSTs allow efficient search!

42

32

12

45

41 50

!8

• Start at the root;
• Trace down a path by comparing k with the key of the

current node x:
• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x

Search for 41, then search for 53

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(const int & d) : data(d) {
 left = right = parent = nullptr;
 }
};

!9

A node in a BST

Define the BST ADT

42

32

12

45

41 50

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

Traversing down the tree

• Suppose n is a pointer to the root. What is the output
of the following code:

n = n->left;
n = n->right;

cout<<n->data<<endl;
A. 42
B. 32
C. 12
D. 41
E. Segfault

42

32

12

45

41 50

Traversing up the tree
• Suppose n is a pointer to the node with value 50.
• What is the output of the following code:

n = n->parent;
n = n->parent;

n = n->left;
cout<<n->data<<endl;

A. 42
B. 32
C. 12
D. 45
E. Segfault

42

32

12

45

41 50

!13

Insert
• Insert 40
• Search for the key
• Insert at the spot you expected to find it

42

32

12

45

41 50

