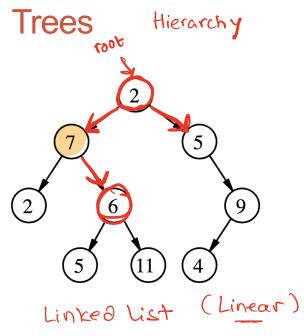
BINARY SEARCH TREES

Problem Solving with Computers-II



A tree has following general properties:

- One node is distinguished as a **root**;
- Every node (exclude a root) is connected by a directed edge *from* exactly one other node;

A direction is: *parent -> children*

• Leaf node: Node that has no children

Which of the following is/are a tree? Empty B. E. All of A-C

Binary Search Trees (BST)

What are the operations supported?

All the operations supported by article arrays

Tast insert and delete

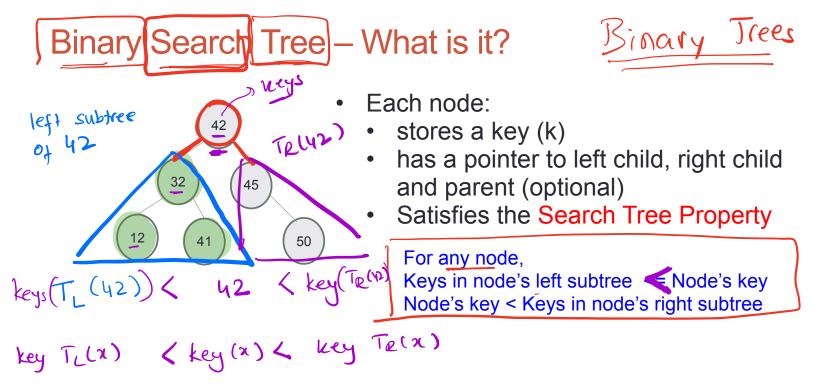
What are the running times of these operations?

Efficient

3 How do you implement the BST i.e. operations supported by it?

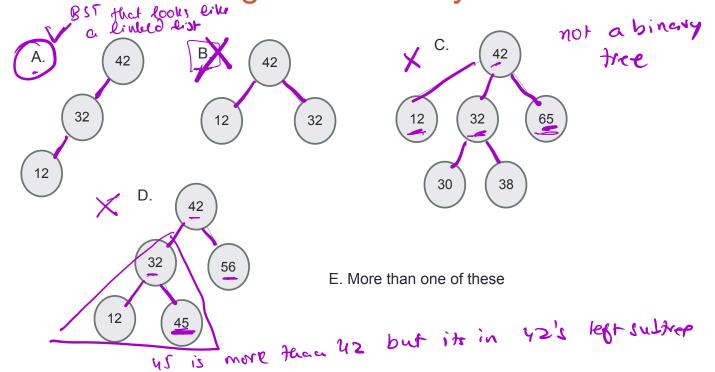
Sorted arrays vs Binary Search Trees (BST)

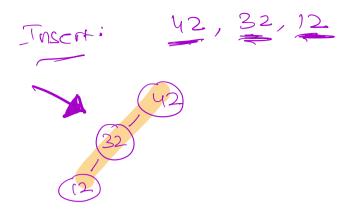
Operations	
Min	
Max	
Successor	
Predecessor	
Search	
Insert	
Delete	
Print elements in order	



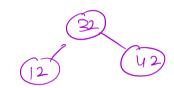
Do the keys have to be integers?

Which of the following is/are a binary search tree?

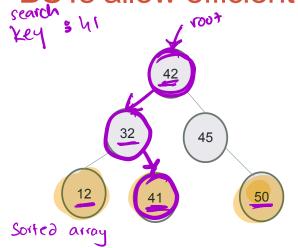




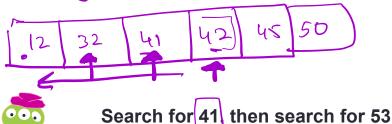
32, 42, 12



BSTs allow efficient search!



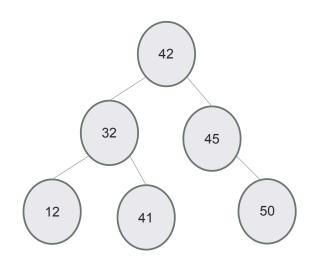
- Start at the root;
- Trace down a path by comparing **k** with the key of the current node x:
 - If the keys are equal: we have found the key
 - If k < key[x] search in the left subtree of x
 - If $\mathbf{k} > \text{key}[\mathbf{x}]$ search in the right subtree of \mathbf{x}



```
Parent
A node in a BST
class BSTNode {
                                       node in a linked list
public:
  BSTNode* left;
  BSTNode* right;
                                   next
 BSTNode* parent;
                               initializer hist
  int const data;
  BSTNode (const int) & d
  →left = right
                  = parent = nullptr;
                  BSTNode *n = new BSTNode $453;
```

Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order



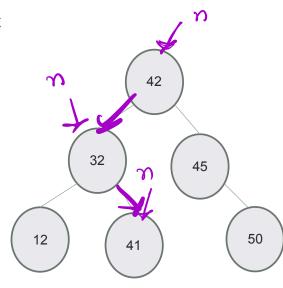
Traversing down the tree

• Suppose n is a pointer to the root. What is the output of the following code:

C. 12

 \bigcirc 41

E. Segfault

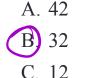


Traversing up the tree

- Suppose n is a pointer to the node with value 50.
- What is the output of the following code:

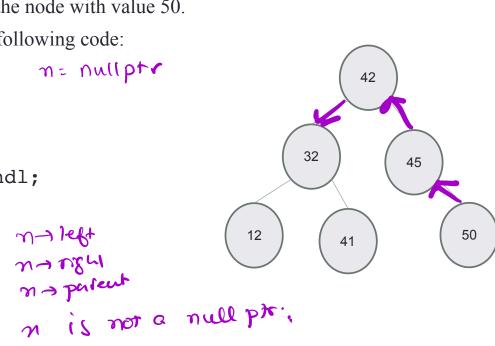
```
n = n->parent; // manuliptr
n = n-parent;
n = n - > left;
```

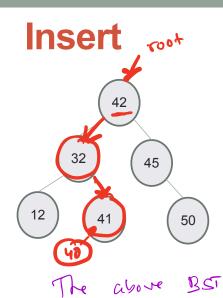
cout<<n->data<<endl;



D. 45

E. Segfault





- Insert 40
- Search for the key
- Insert at the spot you expected to find it

In the case of

tou surted allay

we would need

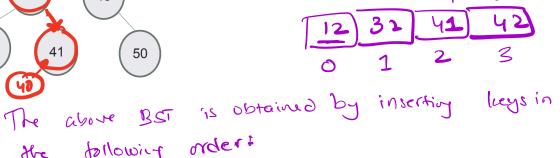
to move the elements

one on each insert

(we might need to

more all demans

in The writcon)



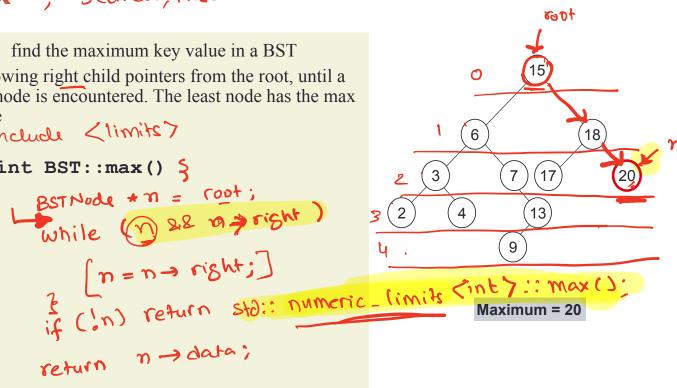
the following order: 42, 32, 41, 12, 45,50

1

Max, search, insert

Goal: find the maximum key value in a BST Following right child pointers from the root, until a leaf node is encountered. The least node has the max value # include < limits?

Alg: int BST::max() \$



Min

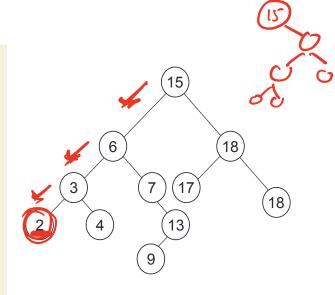
Goal: find the minimum key value in a BST

Start at the root.

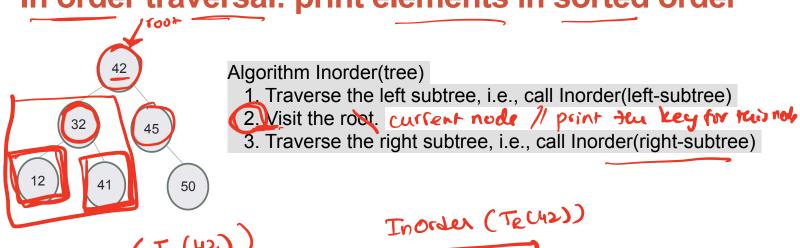
Follow _____ child pointers from the root, until a leaf node is encountered

Leaf node has the min key value

Alg: int BST::min()

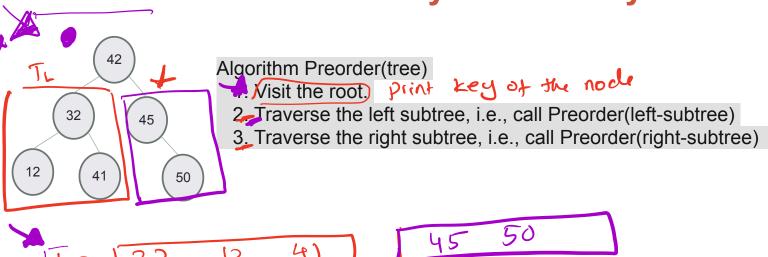


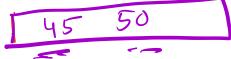
Min = ?

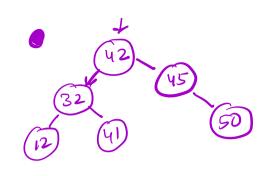


45 50

Pre-order traversal: nice way to linearize your tree!

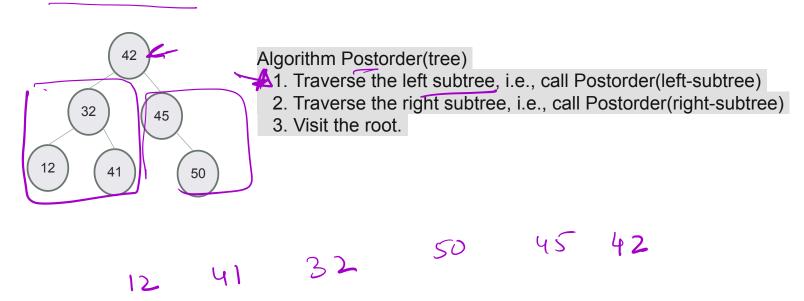




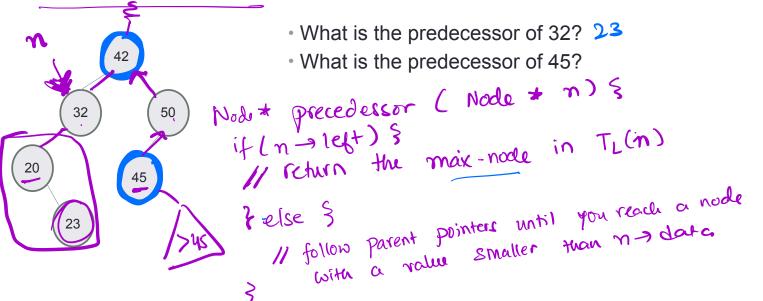


If we insert the key values from the preorder traversel into an empty tree we will get a digital free

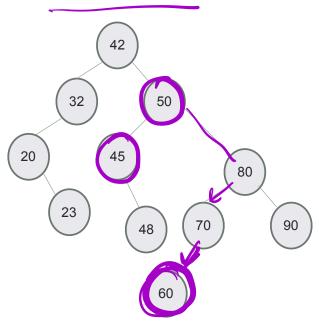
Post-order traversal: use in recursive destructors!



Predecessor: Next smallest element



Successor: Next largest element



- What is the successor of 45? 48
- What is the successor of 50? 60
- What is the successor of 60?

Delete: Case 1

60 is a leaf roch: no children.

Case 1: Node is a leaf node

```
    Set parent's (left/right) child pointer to null

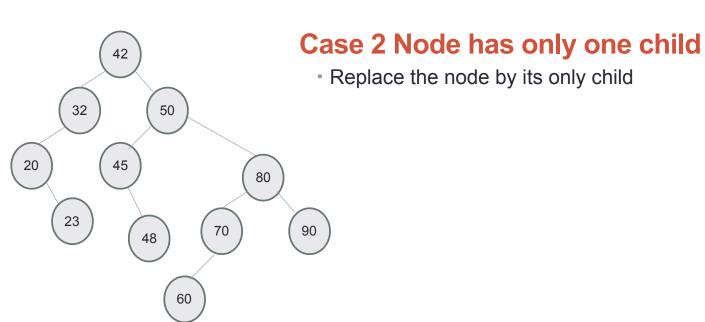
    Delete the node

      32
                  50
                                               if (nlls ! no left 28 ! no right) }
           45
20
                                                        // leaf node.
                              80
                                                        1/ update n's pavents child pointers.
                                                      if (n == n -> parent -> left)

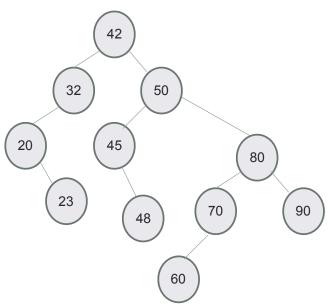
m -> parent -> left = null pir.

else m -> parent -> risht = null pir.
     23
                                    90
                                                         delete n;
     n -> parent -> left is not null ?
```

Delete: Case 2



Delete: Case 3



Case 3 Node has two children

 Can we still replace the node by one of its children? Why or Why not?

Binary Search

- Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.
- Invariant. Algorithm maintains a [lo] ≤ value ≤ a [hi].
- Ex. Binary search for 33.

