BINARY SEARCH TREES

Problem Solving with Computers-II C | '
ae dosa:a;“:d;
"‘n.cr:‘q“ na“\espac
usd > no\\

Trees Hiefo\fch\j A tree has following general properties:

oY One node is distinguished as a root;

* Every node (exclude a root) is connected
by a directed edge from exactly one other
node;

A direction is: parent -> children
» Leaf node: Node that has no children

2's childten are FondS

PC&.\FQM U& 7 \S 2
7 2 g 7 2

Linxed ey (Linear)

h aaa@—)@ —XO)>O»0O

Which of the following is/are a tree? gwen

(oot IS
foot
A. B.

Singe node TEee-

C.

X (D)es

E. All of A-C

* TBinosy Scacda
Binary Search Trees (BST) = s [#\1))

—_—
—_— ——

hat are the operations supported? rd avrays
Cu)?)’) bj O k|

M he opewtions 4 dasv ingert and deleki
2)What are the running times of these operations?

effcs ent

2: How do you implement the BST i.e. operations supported by it?

=
Sorted arrays vs Binary Search Trees (BST)

Operations

Min

Max

Successor
Predecessor

Search

Insert

Delete

Print elements in order

—_— —_—

fBingry; réearcﬂ Tree)— What is it? E‘Lﬂgw cees

4D
= Each node:
W) ° stores akey (k)
> - has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

- (’ (For any node, <
(42) 2. < L '™} Keys in node’s left subtree Node’s key
]:5‘55@‘1. 4 > < “ ed Node’s key < Keys in node’s right subtree

——

key T.0O < Le@(’@(leesy 2 ()

\es? Subree
oy U

Do the keys have to be integers?

Which of the following is/are a binary search tree?

T We
QS z&kv&u—é} % 0/ nokt a\ai'\cﬂ‘/

@@

Tee

E. More than one of these

Yz buf ik Y2t lef duddeep

%2, Lll(‘ 12~

8
BSTs allow efficient search!

A @7

ceal

Start at the root;

Trace down a path by comparing k with the key of the

current ngde X:

- If the keys are equal: we have found the key
- [Ifk < key[x] pearch in the left subtree of x
If k > key[x] pearch in the right subtree of x

Sotteo mroj

Ll’L 32\ W |U2| us)50
] ‘ |
—1—— T

[3

@ Search for@ then search for 53
A==

Anode in a BST us)9 @

class BSTNode { legt g

i node NG Qinted W

BSTNode* left;
{BSTNode* right;

BSTNode* parent; Cakc. “ﬁ N
int const data, i itz war
& 7

BSTNode (const) : data(d) f{
~>left right = parent = nullptr;

—

ReTNode SH5

— (O
}; BSTN@&Q N fre

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

Traversing down the tree @ TNoles novoolt g

Suppose 1 is a pointer to the root. What is the output
of the following code:

n = n->right;

cout<<n->data<<endl;
A. 42
B. 32
C. 12

(D)4

E. Segfault

Traversing up the tree

Suppose n is a pointer to the node with value 50.

+ What is the output of the following code:
n = n->parent; ,/ M= nullphy
n = n->parent;
n = n->left;

cout<<n->data<<endl;

A. 42
(B) 32 N legt
C. 12 nATE |
’ {
m D
D. 45 L

‘ oL pr
E. Segfault mo(g e e MR T

*Insert 40

- Search for the key
-Insert at the spot you expected to find it

—_— N
) T fu (oA N

’.'.3”31"\13'1 42 | oo Sucked &Sy
@) 1 < 2 Loe WD qw:fm\b

. , ' ove At &E
(ﬂ\e Lpewe BT NS obra WO \D\j U’\sc(“wj lmﬂs o © r;lod,\ et

O~

¥re é—p(\o\p}uj ndet? (v wagF on
AL oM ehetnet

l‘fz/ 32/ L’(\/],1/‘ L“\5/ . ./J(U\NN\)'QW)
1

Max Searcha i nterd

/

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a
leaf node is encountered. The least node has the max
value

B s LNk
Alg: int BST::max() 3
‘_ .
pSTNode #M = (2°F,
'\]
Fonile (3 0P)

["n =D r\é"\“-jj

. ((N\\k <'ﬂ\k7 .':“\00((3;

’i (La) vehuln SN0 ‘\F‘"L“_ﬁp__ Maximum = 20
\ (4
reruld n = daked

Min

Goal: find the minimum key value in a BST

Start at the root.

Follow child pointers from the root, until a
leaf node is encountered

Leaf node has the min key value

Alg: int BST: :min ()

In order traversal: print elements in sorted order

Too*

Algorithm Inorder(tree)
3| Traverse the left subtree, i.e., call Inorder(left-subtree)

isit the rost, cuctent node // peint St ey fiv 1e nob
. Traverse the right subtree, i.e., call Inorder(right-subtree)

—

Tin OcdeA (TeL))
cO

Preoorder traversal: nice way to linearize your tree!

%o

Algorithm Preorder(tree)
‘31ﬁsﬂ1e_ro® Drint ked of Hhe nods

2-Jraverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

Algorithm Postorder(tree)
~A1. Traverse the left subtree, i.e., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorder(right-subtree)
3. Visit the root.

P!edecessor: Next smallest element

- What is the predecessor of 32? 23
* What is the predecessor of 457

DI
@ Nods * ?feceéexsm' (Nede * T

y, q/tﬂ-ale.@'?wi i v N TLGY\)
o

V/4 N
de
no
Y ele 3 . R fou (e @
D‘(\‘\'CLC wn
/ 7N ples ?“““*oﬁ) poller Yoo M2 92
ST
]

e
Successor: Next largest element

- What is the successor of 45? 4D
* What is the successor of 50?7 60
- What is the successor of 60? =0

Delete: Case 1 Lo s o Vg rode : Mo dN\dren.

e Case 1: Node is a leaf node

+ Set parent’s (left/right) child pointer to null
* Delete the node

e DS
2 \m- cight
;{,(1\&‘%1“*\%9’ ’
g N // leas “OM‘ ’ 19 Po.(“)d‘f
// updeke WS yo\au\ﬂ <) -
/\‘&(N == ’Y\—A\')Cl(e’* ;&\C‘Ej mu\\?’rf '
— P> < :
m- PC‘{CV\ s ‘.:e]\" zﬂu@@i
Q«l&(" D IPO‘{C”
delete N,
/

v o> g s Tor n) 2

r 4

Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child

Delete: Case 3
e Case 3 Node has two children

- Can we still replace the node by one of its

a @ children? Why or Why not?

® o6 @

Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[1i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value =< a[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0O 1 2 3 4 5 66 7 8 9 10 11 12 13 14

