BINARY SEARCH TREES
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Trees Hiefo\fch\j A tree has following general properties:

oY  One node is distinguished as a root;

* Every node (exclude a root) is connected
by a directed edge from exactly one other
node;

A direction is: parent -> children
» Leaf node: Node that has no children
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Which of the following is/are a tree?  gwen
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hat are the operations supported? rd avrays
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M he opewtions 4 dasv ingert  and deleki
2)What are the running times of these operations?

effcs ent

2: How do you implement the BST i.e. operations supported by it?
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Sorted arrays vs Binary Search Trees (BST)

Operations

Min

Max

Successor
Predecessor

Search

Insert

Delete

Print elements in order
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fBingry; réearcﬂ Tree)— What is it? E‘Lﬂgw cees

4D
= Each node:
W) ° stores akey (k)
> - has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property
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Do the keys have to be integers?



Which of the following is/are a binary search tree?
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BSTs allow efficient search!
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Start at the root;

Trace down a path by comparing k with the key of the

current ngde X:

- If the keys are equal: we have found the key
- [Ifk < key[x] pearch in the left subtree of x
If k > key[x] pearch in the right subtree of x
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Anode in a BST us )9 @

class BSTNode { legt g

i node NG Qinted W

BSTNode* left;
{BSTNode* right;

BSTNode* parent; Cakc. “ﬁ N
int const data, i itz war
& 7

BSTNode ( const ) : data(d) f{
~>left right = parent = nullptr;
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Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order




Traversing down the tree @ TNoles novoolt g

Suppose 1 is a pointer to the root. What is the output
of the following code:

n = n->right;

cout<<n->data<<endl;
A. 42
B. 32
C. 12

(D)4

E. Segfault




Traversing up the tree

Suppose n is a pointer to the node with value 50.

+ What is the output of the following code:
n = n->parent; ,/ M= nullphy
n = n->parent;
n = n->left;

cout<<n->data<<endl;
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*Insert 40

- Search for the key
-Insert at the spot you expected to find it
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Max Searcha i nterd
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Goal: find the maximum key value in a BST

Following right child pointers from the root, until a
leaf node is encountered. The least node has the max
value
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Min

Goal: find the minimum key value in a BST

Start at the root.

Follow child pointers from the root, until a
leaf node is encountered

Leaf node has the min key value

Alg: int BST: :min ()




In order traversal: print elements in sorted order

Too*

Algorithm Inorder(tree)
3| Traverse the left subtree, i.e., call Inorder(left-subtree)

isit the rost, cuctent node // peint St ey fiv 1e nob
. Traverse the right subtree, i.e., call Inorder(right-subtree)
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Preoorder traversal: nice way to linearize your tree!

%o

Algorithm Preorder(tree)
‘31ﬁsﬂ1e_ro® Drint ked of Hhe nods

2-Jraverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)







Post-order traversal: use in recursive destructors!

Algorithm Postorder(tree)
~A1. Traverse the left subtree, i.e., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorder(right-subtree)
3. Visit the root.



P!edecessor: Next smallest element

- What is the predecessor of 32? 23
* What is the predecessor of 457
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Successor: Next largest element

- What is the successor of 45? 4D
* What is the successor of 50?7 60
- What is the successor of 60? =0




Delete: Case 1 Lo s o Vg rode : Mo dN\dren.

e Case 1: Node is a leaf node

+ Set parent’s (left/right) child pointer to null
* Delete the node
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Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child



Delete: Case 3
e Case 3 Node has two children

- Can we still replace the node by one of its

a @ children? Why or Why not?
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Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[1i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value =< a[hi].

- Ex. Binary search for 33.
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