PROGRAMMING ASSIGNMENT - 1
RUNNING TIME ANALYSIS - PART 2

Problem Solving with Computers-I| C l '
aos“eaxd:
© waﬂ‘:}.\“ Az T2 =

Pick matching cards R e
Alice Bob
h 3 c 2
s 10 d a
C a h 10
c 3 c 3
s 5 d j
h 10 s 10
d h a

Each player maintains an ordered hand of cards

L
How is this assignment different from lab4?

Alice Bob
h 3 c 2
s 10 d a
C a h 10
c 3 c 3
s 5 dj
h 10 s 10
d a h a

Requirement: Store each hand in a BST

On Alice’s tum o T
Alice Bob
h 3 c 2
s 10 bob.contains(“c a”)? NO d 3
> c a h 10
c3 c3
S 5 d j
h 10 s 10
d a h

Alice iterates through her cards from smallest to largest until she
finds a matching card in Bob’s hand

L
On Alice’s turn

Alice Bob

h 3 . c 2
bob.contains(“c a”)? NO d a
5 10 bob.contains(“c 3")? Yes
C a h 10
> c 3 c3

s 5 dj
h 10 s 10
d a h a

Alice iterates through her cards from smallest to largest until she
finds a matching card in Bob’s hand

L
On Alice’s turn

Alice Bob

h 3 . C 2
bob.contains(“c a”)? NO d a
5 10 bob.contains(“c 3")? Yes
S c print message h 10
> alice. delete(“c 37)
s 5 bob.delete(“c 3”) dj
h 10 s 10
d a h a
Print message Alice picked matching card c 3

Delete the card from both hands
Now its bob’s turn

) Clubs < diamonds < spades < hearts
On BObSturn ace<2<3...<10<j<g<k

Alice Bob starts from largest card Bob

h 3 . . C 2
alice.contains(*h 10™)? Yes d a

5 10 print message

c a bob. delete(*h 10”) 1 L <
alice.delete(“h 107)

s 5 dj

h 10 s 10

d a h a

Alice picked matching card c 3

L
On Bob’s turn

Alice Repeat the same process Bob
h 3 . . C 2
alice.contains(*h 10™)? Yes
s 10 : d a
print message
& e bob. delete(*h 107)
alice.delete(“h 107) |
s 5 dj
s 10
d a h a

Alice picked matching card c 3
Bob picked matching card h 10

Alice’s turn

Alice

h
S
C

3
10
a

bob.contains(“c a”)? NO
bob.contains(“d a”)? Yes

print message

Clubs < diamonds < spades < hearts
ace<2<3...<10<j<qg<k

Bob

c 2
d a

d]
s 10
h a

Alice picked matching card c 3
Bob picked matching card h 10
Alice picked matching card d a

:) Clubs < diamonds < spades < hearts
A|IC€S turn ace<2<3...<10<j<g<k

Alice Bob
h 3 . c 2
bob.contains(“c a”)? NO
5 10 bob.contains(“d a”)? Yes
€ e print message
alice. delete(“d a”)
s 5 bob.delete(“d a”) dj
s 10
h a

Alice picked matching card c 3
Bob picked matching card h 10
Alice picked matching card d a

) Clubs < diamonds < spades < hearts
BObSturn ace<2<3...<10<j<g<k

Alice What card should Bob Bob
s check for in Alice’s hand? c 2
s 10 alice.contains(___)?

C ad

s 5 dj
s 10
h a

Alice picked matching card c 3
Bob picked matching card h 10
Alice picked matching card d a

) Clubs < diamonds < spades < hearts
BObSturn ace<2<3...<10<j<g<k

Alice Bob

h 3 . . . c 2
Alice picked matching card c 3

s 10 Bob picked matching card h 10

¢ a Alice picked matching card d a

5 Bob picked matching card s 10 d j
s 10

h a

L
Should Alice take another turn? Yes / No

Alice Bob

h 3 . . . c 2
Alice picked matching card c 3

Bob picked matching card h 10

Alice picked matching card d a

Bob picked matching card s 10 d j

h a

LS - R
What iS the Condition tO endf) Clubs < diamonds < spades < hearts

ace<2<3...<10<j<qg<k

Alice Bob

h 3 c 2
A.Player has no cards left

B.Player iterated through

C a
their cards and found no
< 5 matching card d j
C.AorB

D.Something else h 3

11111 D~ kM
End game Condition Clubs < diamonds < spades < hearts

ace<2<3...<10<j<qg<k

Alice Bob

h 3 . . . c 2
Alice picked matching card c 3

Bob picked matching card h 10

¢ a Alice picked matching card d a
5 Bob picked matching card s 10 d j
Alice's cards:
C d
s 5 h a
h 3
Bob's cards
c 2
d j
h a

L
Definition of Big-O

f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there 1s a constant ¢ >0 and k>0 such that
f(n) <c - g(n) for all n >=Kk.

100

f=0(g)
means that “f grows no faster than g”
30 2n+20

10

0

L ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10

L
Big-Omega
e f(n) and g(n) map positive integer inputs to positive reals.

We say f = Q(g) if there are constants ¢ > 0, k>0 such that
c-g(n)=<f(n) forn>= Kk

100

90

f=0Q(g)

means that “f grows at least as fast as g”

8ot
70}
60}
50}
40l
30} 2n+20
20f

10

0

L I I I I I ! !
1 2 3 4 5 6 7 8 9 10

L
Big-Theta

e f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there are constants c,, ¢,, k such that
0 <c,g(n) <f(n) <c,g(n), for n >=k

f(n)

Running time
<9 (n)

N/ k

Problem Size (n)

L
Best case and worst case analysis

What is the Big-O running time of search in a sorted array of size n?

...using linear search?

...using binary search?

-
Worst case analysis of binary search

bool binarySearch(int arr[], int element, int n){
//Precondition: 1input array arr 1s sorted 1n ascending order
int begin =

int end = n-

int mid;
while (begin <= end){
mid = (end + begin)/2;
if(arr[mid]l==element){
return true;
yelse if (arr[midl< element){
begin = mid + 1;
relsed
end = mid - 1;

0;
1;

}
}

return false;

L
Best case and worst case : sorted array

- Search (Binary search)
- Min/Max

- Median

- Successor/Predecessor
- Insert

- Delete

6 1314253343 |51 /53|64 (72|84 9395|9697
o 1 2 3 4 5 6 7 8 9 10 1 12 13 14

Path — a sequence of (zero or more) connected nodes.

Length of a path - number of edges traversed on the path

Height of node — Length of the longest path from the node to a leaf node.
Height of the tree - Length of the longest path from the root to a leaf node.

“

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes,
what is the worst case complexity of
searching for a key?

A.

B
C.
D
E

Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes,
what is the worst case complexity of finding
the predecessor or successor key?

A

B
C
D
E

- 0O(1)

. O(log H)

. O(H)

. O(H*log H)
- O(N)

Worst case Big-O of delete

Given a BST of height H and N
nodes, what is the worst case
complexity of deleting a node?

A

B
C
D
E

- 0O(1)

. O(log H)

. O(H)

. O(H*log H)
- O(N)

Big O of traversals

@ In Order:
Pre Order:
@ e Post Order:

Types of BSTs

Level 0 e Balanced BST:

Level 1 a e
@ 0 Complete Binary Tree: Every level, except
Level 2 e @ possibly the last, is completely filled, and all
nodes are as far left as possible

Full Binary Tree: A complete binary tree whose
last level is completely filled

B
Relating H (height) and n (#nodes) for a full binary tree

Level O

Level 1

Level 2

L
Big-O analysis

What takes so long? Let’s unravel the recursion...

procedure F(n: a positive integer) F(n)
if(n <= 2) return 1 / \
return F(n-1) + F(n-2) F(n-1) F (n-2)
F(n-2) F(n-3) F(n-3) F(n-4)

/NN NN

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

The same subproblems get solved over and over again!

Balanced trees

- Balanced trees by definition have a height of O(log n)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

