
PROGRAMMING ASSIGNMENT - 1

RUNNING TIME ANALYSIS - PART 2

Problem Solving with Computers-II

Pick matching cards

Alice Bob

Each player maintains an ordered hand of cards

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < k

Alice Bob

Requirement: Store each hand in a BST

How is this assignment different from lab4?

On Alice’s turn

Alice Bob

Alice iterates through her cards from smallest to largest until she
finds a matching card in Bob’s hand

bob.contains(“c a”)? NO

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < k

Alice Bob

Alice iterates through her cards from smallest to largest until she
finds a matching card in Bob’s hand

bob.contains(“c a”)? NO

bob.contains(“c 3”)? Yes

On Alice’s turn

Alice Bob

Print message

Delete the card from both hands

Now its bob’s turn

bob.contains(“c a”)? NO

bob.contains(“c 3”)? Yes

print message

alice. delete(“c 3”)

bob.delete(“c 3”)

Alice picked matching card c 3

On Alice’s turn

Alice Bob Bob starts from largest card

alice.contains(“h 10”)? Yes

print message

bob. delete(“h 10”)

alice.delete(“h 10”)

Alice picked matching card c 3

On Bob’s turn Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < k

Alice Bob Repeat the same process

alice.contains(“h 10”)? Yes

print message

bob. delete(“h 10”)

alice.delete(“h 10”)

Alice picked matching card c 3

On Bob’s turn

Bob picked matching card h 10

Alice Bob

Alice picked matching card c 3

Alice’s turn

Bob picked matching card h 10

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < k

bob.contains(“c a”)? NO

bob.contains(“d a”)? Yes

print message

Alice picked matching card d a

Alice Bob

Alice picked matching card c 3

Alice’s turn

Bob picked matching card h 10

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < k

bob.contains(“c a”)? NO

bob.contains(“d a”)? Yes

print message

alice. delete(“d a”)

bob.delete(“d a”)

Alice picked matching card d a

Alice Bob

Alice picked matching card c 3

Bob’s turn

Bob picked matching card h 10

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < k

Alice picked matching card d a

What card should Bob
check for in Alice’s hand?

alice.contains(___)?

Alice Bob
Alice picked matching card c 3

Bob’s turn

Bob picked matching card h 10

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < k

Alice picked matching card d a

Bob picked matching card s 10

Alice Bob
Alice picked matching card c 3

Should Alice take another turn? Yes / No

Bob picked matching card h 10

Alice picked matching card d a

Bob picked matching card s 10

Alice Bob

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < kWhat is the condition to end?

A.Player has no cards left

B. Player iterated through

their cards and found no
matching card

C. A or B

D.Something else

Alice Bob
Alice picked matching card c 3

Bob picked matching card h 10

Alice picked matching card d a

Bob picked matching card s 10

Alice's cards:

c a

s 5

h 3

Bob's cards:

c 2

d j

h a

Clubs < diamonds < spades < hearts

ace < 2 < 3 …..< 10 < j < q < kEnd game condition

Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant c > 0 and k>0 such that

 f(n) ≤ c · g(n) for all n >= k.

f = O(g)

means that “f grows no faster than g”

Big-Omega
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Ω(g) if there are constants c > 0, k>0 such that

c · g(n) ≤ f(n) for n >= k

f = Ω(g)

means that “f grows at least as fast as g”

Big-Theta
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Θ(g) if there are constants c1, c2, k such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), for n >=k

Running time

Problem Size (n)

Best case and worst case analysis

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

What is the Big-O running time of search in a sorted array of size n?

…using linear search?

…using binary search?

Worst case analysis of binary search
20

bool binarySearch(int arr[], int element, int n){

//Precondition: input array arr is sorted in ascending order

 int begin = 0;

 int end = n-1;

 int mid;

 while (begin <= end){

 mid = (end + begin)/2;

 if(arr[mid]==element){

 return true;

 }else if (arr[mid]< element){

 begin = mid + 1;

 }else{

 end = mid - 1;

 }

 }

 return false;

}

Best case and worst case : sorted array

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

• Search (Binary search)
• Min/Max
• Median
• Successor/Predecessor
• Insert
• Delete

22

BSTs of different heights are possible with the same set of keys

Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of (zero or more) connected nodes.

• Length of a path - number of edges traversed on the path

• Height of node – Length of the longest path from the node to a leaf node.

• Height of the tree - Length of the longest path from the root to a leaf node.

23

Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes,
what is the worst case complexity of
searching for a key?

A. O(1)

B. O(log H)

C. O(H)

D. O(H*log H)

E. O(N)

42

32

12

45

41 50

24

Worst case Big-O of predecessor / successor

Given a BST of height H and N nodes,
what is the worst case complexity of finding
the predecessor or successor key?

A. O(1)

B. O(log H)

C. O(H)

D. O(H*log H)

E. O(N)

42

32

12

45

41 50

25

Worst case Big-O of delete

Given a BST of height H and N
nodes, what is the worst case
complexity of deleting a node?

A. O(1)

B. O(log H)

C. O(H)

D. O(H*log H)

E. O(N)

42

32

12

45

41 50

26

Big O of traversals

In Order:

Pre Order:

Post Order:

42

32

12

45

41 50

Types of BSTs

27

Balanced BST:

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
nodes are as far left as possible

Full Binary Tree: A complete binary tree whose
last level is completely filled

42

32

12

45

41 5043

Level 0

Level 1

Level 2

Relating H (height) and n (#nodes) for a full binary tree
Level 0

Level 1

Level 2

……

28

Big-O analysis

procedure F(n: a positive integer)

 if(n <= 2) return 1

 return F(n-1) + F(n-2)

Balanced trees
• Balanced trees by definition have a height of O(log n)

• A completely filled tree is one example of a balanced tree

• Other Balanced BSTs include AVL trees, red black trees and so on

• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

