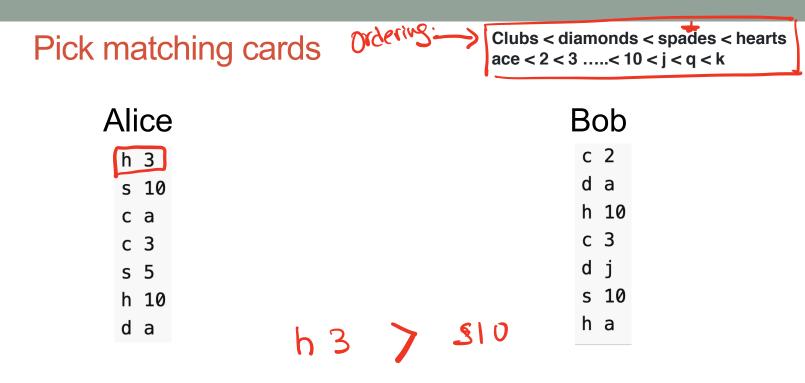
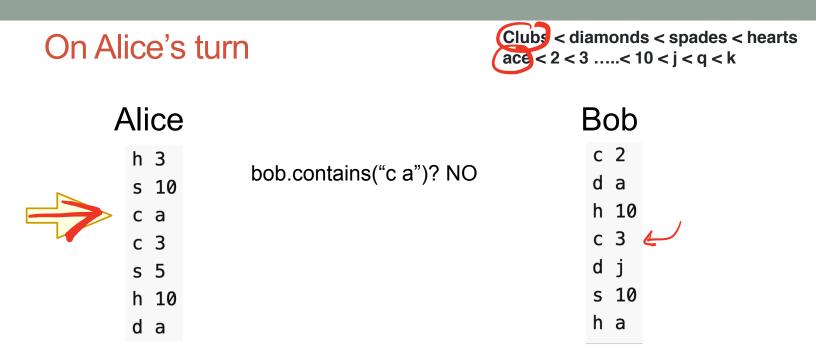
PROGRAMMING ASSIGNMENT - 1 RUNNING TIME ANALYSIS - PART 2

Problem Solving with Computers-II

include <iostream> using namespace std; int main() cout</ritola Facebook(n"; return 0;

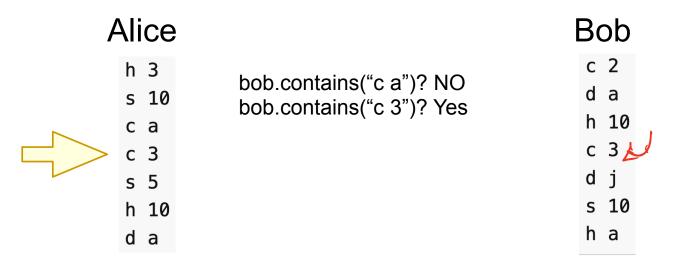


Each player maintains an ordered hand of cards



Alice iterates through her cards from smallest to largest until she finds a matching card in Bob's hand

On Alice's turn



Alice iterates through her cards from smallest to largest until she finds a matching card in Bob's hand

On Alice's turn

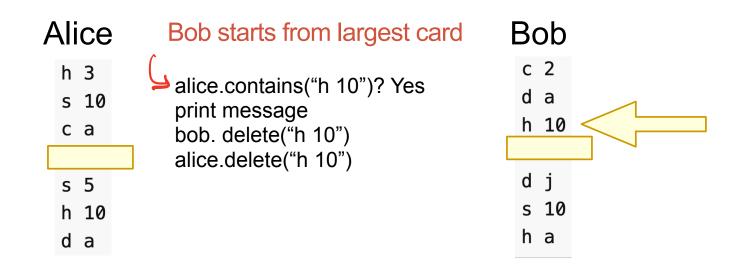
Alice		Bob
h 3 s 10 c a	bob.contains("c a")? NO bob.contains("c 3")? Yes print message	c 2 d a h 10
s 5 h 10 d a	alice. delete("c 3") bob.delete("c 3")	d j s 10 h a

Print message Delete the card from both hands Now its bob's turn

Alice picked matching card c 3

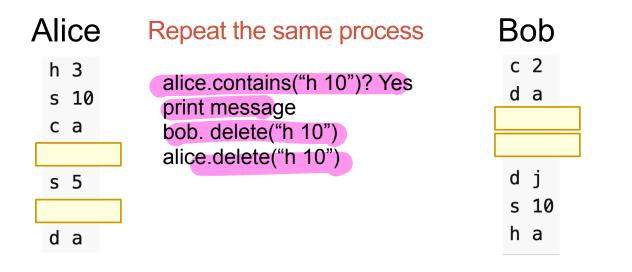
On Bob's turn

Clubs < diamonds < spades < hearts ace < 2 < 3< 10 < j < q < k



Alice picked matching card c 3

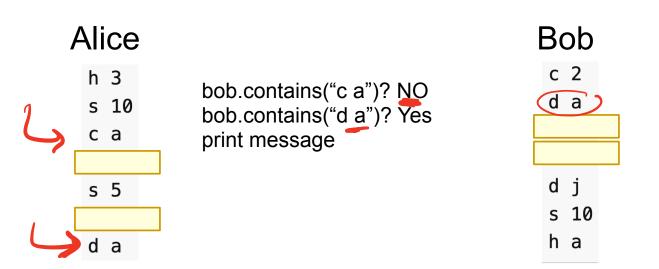
On Bob's turn



Alice picked matching card c 3 Bob picked matching card h 10

Alice's turn

Clubs < diamonds < spades < hearts ace < 2 < 3< 10 < j < q < k



Alice picked matching card c 3 Bob picked matching card h 10 Alice picked matching card d a

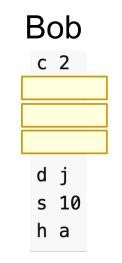
Alice's turn

Alice

h	3
S	10
С	а

s 5

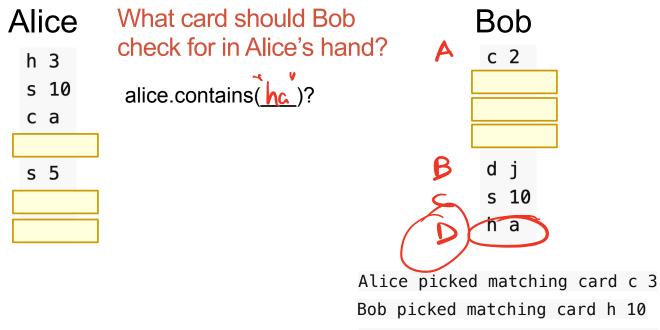
bob.contains("c a")? NO bob.contains("d a")? Yes print message alice. delete("d a") bob.delete("d a") Clubs < diamonds < spades < hearts ace < 2 < 3< 10 < j < q < k



Alice picked matching card c 3 Bob picked matching card h 10 Alice picked matching card d a

Bob's turn

Clubs < diamonds < spades < hearts ace < 2 < 3< 10 < j < q < k

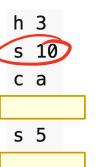


Alice picked matching card d a

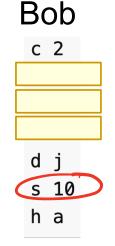
Bob's turn

Alice

Clubs < diamonds < spades < hearts ace < 2 < 3< 10 < j < q < k



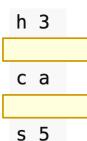
Alice picked matching card c 3 Bob picked matching card h 10 Alice picked matching card d a Bob picked matching card s 10



Should Alice take another turn? Yes / No

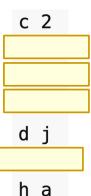
Alice

Bob



Alice picked matching card c 3 Bob picked matching card h 10 Alice picked matching card d a

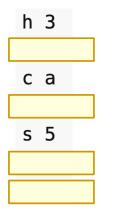
Bob picked matching card s 10



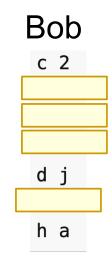
What is the condition to end?

Clubs < diamonds < spades < hearts ace < 2 < 3< 10 < j < q < k

Alice



A.Player has no cards left
B.Player iterated through their cards and found no matching card
C A or B
D.Something else



End game condition

Clubs < diamonds < spades < hearts ace < 2 < 3< 10 < j < q < k

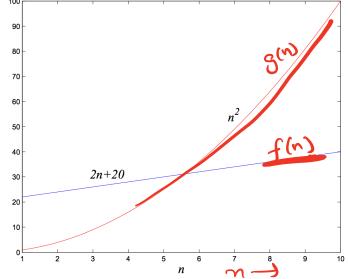
Alice		Bob
h 3	Alice picked matching card c 3	c 2
са	Bob picked matching card h 10	
	Alice picked matching card d a	
s 5	Bob picked matching card s 10 Alice's cards:	d j
	c a 🗸 s 5 🖌 h 3 🏒	h a
	Bob's cards: c 2 d j h a	

Definition of Big-O

f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant c > 0 and k>0 such that $f(n) \le c \cdot g(n)$ for all $n \ge k$.

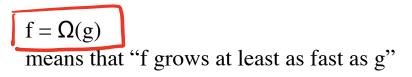
f = O(g)means that "f grows no faster than g"

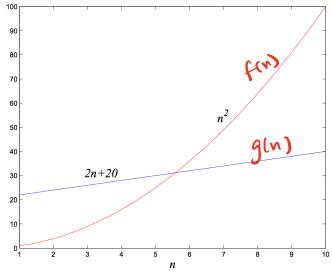


Big-Omega

• f(n) and g(n) map positive integer inputs to positive reals.

We say $f = \Omega(g)$ if there are constants c > 0, k>0 such that $c \cdot g(n) \le f(n)$ for $n \ge k$

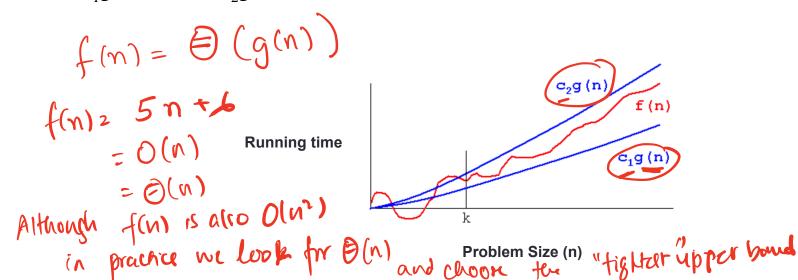




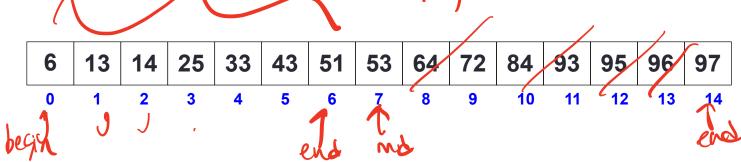
Big-Theta

• f(n) and g(n) map positive integer inputs to positive reals.

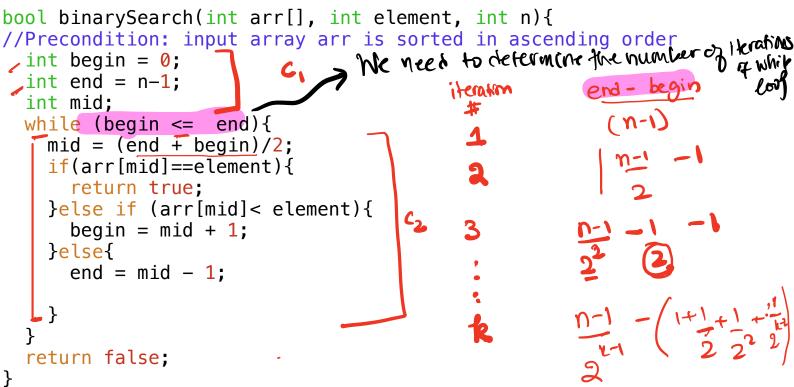
We say $f = \Theta(g)$ if there are constants c_1, c_2 , k such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, for $n \ge k$



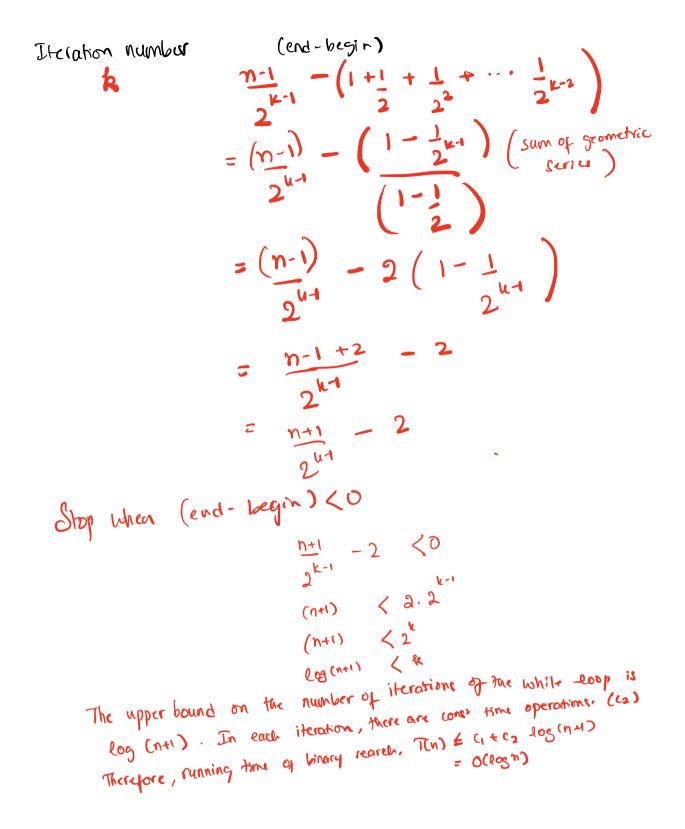
Best case and worst case analysis What is the Big-O running time of search in a sorted array of size n? Best case - find the min key O(1) Worst case - find the max key O(n) or key doesn't exist ...using linear search? Best case - find the mid value key OCI) ...using binary search? key doesn't -exist - 0(1030)



Worst case analysis of binary search



20



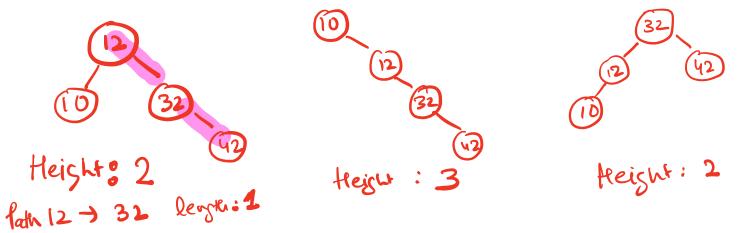
Best case and worst case : sorted array Best case worst case

 Search (Binary search) 	0(1)	O(log n)
• Min/Max	0(1)	0(1)
Median	0(1)	0(1)
 Successor/Predecessor 	0(1)	0(1)
Insert	0(1)	0(n)
• Delete	0(1)	O(n)

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0														

Path – a sequence of (zero or more) connected nodes.

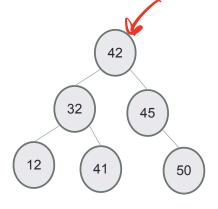
- Length of a path number of edges traversed on the path
- Height of node Length of the longest path from the node to a leaf node.
- Height of the tree Length of the longest path from the root to a leaf node.



BSTs of different heights are possible with the same set of keys Examples for keys: 12, 32, 41, 42, 45

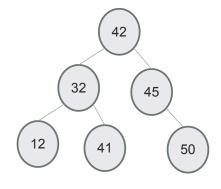
Height (32)?

Worst case Big-O of search, insert, min, max



Best case: scarchip for root wey: O(1) Given a BST of height H with N nodes, what is the worst case complexity of searching for a key? A. O(1) B. O(log H) D. $O(H^*\log H)$ E. O(N)

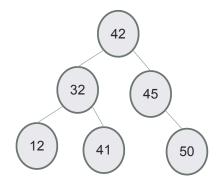
Worst case Big-O of predecessor / successor



Given a BST of height H and N nodes, what is the worst case complexity of finding the predecessor or successor key?

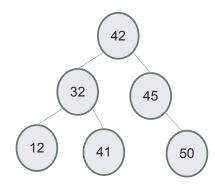
- A. O(1)
- B. O(log H)
- C. O(H)
- D. $O(H^*\log H)$
- E. O(N)

Worst case Big-O of delete



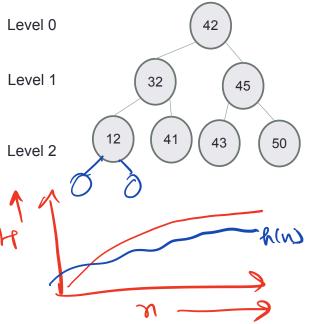
Given a BST of height H and N nodes, what is the worst case complexity of deleting a node? A. O(1) B. O(log H) D. $O(H^*\log H)$ E. O(N)

Big O of traversals



In Order: O(n)Pre Order: O(n)Post Order: O(n)

Types of BSTs

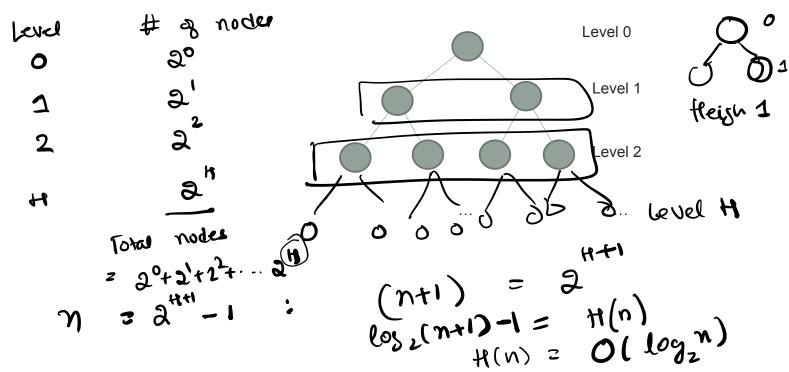


Balanced BST: $H = O(\log n)$ AVL, red-black

Complete Binary Tree: Every level, except possibly the last, is completely filled, and all nodes are as far left as possible

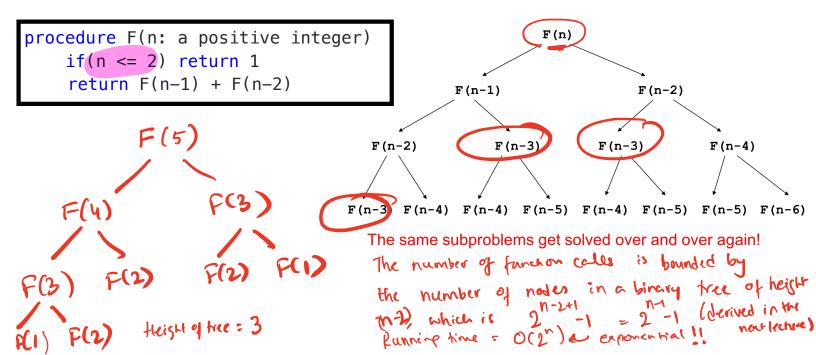
Full Binary Tree: A complete binary tree whose last level is completely filled

Relating H (height) and n (#nodes) for a full binary tree



Big-O analysis

What takes so long? Let's unravel the recursion...



Another approach h deriving the Big-0 of running time
T(n): Running time of F(n)
We have the following secure a setection

$$T(x) = T(x) = 4$$

 $T(x) = T(x-x) + T(x-2) + C$ C is some constant
 $\leq 2 T(x-x) + C$ (T(x-1) > T(x-2), and we can make
 $\leq 2 T(x-x) + C$ (T(x-1) > T(x-1), and we can make
 $\leq 2 T(x-2) + C$ (Substitute for T(x-1))
 $= 2^2 T(x-2) + 3C$
Lequetry this proces we set
 $T(x) \leq 2^k T(x-k) + (2^k - 1) C$
Bate case $x - k = 1$
 $\Rightarrow k = n^{-1}$
Subschute for $k = 0$ set
 $T(x) \leq 2^{n-1} T(1) + (2^n - 1) C$
 $= 2^{n-1} (1 + 2^{n-1}) - C$
 $= 0(2^n)$ (same regult as before!)

Balanced trees

- Balanced trees by definition have a height of O(log n)
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: <u>https://visualgo.net/bn/bst</u>