
C++ OPERATOR OVERLOADING 
DESTRUCTOR

Problem Solving with Computers-II

Read the syllabus.  Know what’s required.  Know how to get help.



Review Concepts from CS16
• Review basics of classes 

• Defining classes and declaring objects  
• Access specifiers: private, public  
• Different ways of initializing objects and when to use each: 

• Default constructor 
• Parametrized constructor 
• Parameterized constructor with default values 
• Initializer lists 



Today’s learning goals:
3

1. Operator overloading 

• what is operator overloading? 

• why/when would we need to overload operators? 

• how to overload operators in C++ ? 

2. Destructor:  

• what is a destructor? 

• why/when would we need one? 

• how to implement a destructor? 



How many objects of type Complex are created in main()?
4

class Complex 
{ 
private: 
    double real; 
    double imag; 
public: 
    Complex(double re = 0, double im = 0); 
    double getMagnitude() const; 
    double getReal() const; 
    double getImaginary() const; 
    void print() const; 
    void conjugate(); 
    void setReal(double r); 
    void setImag(double r);    
};

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
w.print();                

}

A. One 
B. Two 
C. Three 
D. Four 
E. I am not sure . . .



Fill in the blank to print the values of the object on the heap
5

Desired output: 
10 + 5j 
 2 + 3j

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
w.print(); 

               
}



Review Constructor
• The constructor is a special method that is called right AFTER 

an object is created in memory (on the heap or stack) 

• The compiler automatically generates a default constructor 

• But you can implement a user-defined version



New method: add() 
7

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
p = ______________;  
p.print(); 

}

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
p = ______________;   
p.print()         

}

Approach 1 Approach 2



New method: add()
8

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
p = add(*q, w); 
p.print();  

}

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
p = q->add(w);  
p.print();          

}

A: Approach 1 B: Approach 2



Overloading the + operator for Complex objects
9

           
p = add(x, w); 

           
p = x.add(w);  

  p = x + w;

Goal: We want to apply the + operator to Complex type objects 



Overloading the << operator
10

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
w.print(); 
q->print();    

}

int main(){     
Complex p;                      
Complex *q = new Complex(2, 3); 
Complex w(10, -5);         
w.conjugate();            
cout << w; 
cout << *q;              

}

Before overloading the << operator After overloading the << operator



Select any equivalent C++ statement:

11

cout << w;

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C



Select the function declaration that best matches the above call

12

operator<<(cout, w);

void operator<<(ostream &out,  
                const Complex &c);

void Complex::operator<<(ostream &out);

A

B

Complex operator<<(ostream &out, Complex c);C



Select the function declaration that best matches the above call

13

Complex w(1, 10), x(5, 1); 
cout<< w << x;

    void operator<<(ostream &out,  
                    const Complex &c);

A

B

C

Complex& operator<<(ostream &out,  
                    const Complex &c);

ostream& operator<<(ostream &out,  
                    const Complex &c);



Operator Overloading
We would like to be able to perform operations on two objects of the class using the 
following operators: 
<< 
== 
!= 
+ 
- 
and possibly others



Constant pointers and pointers to constants

const char* p1; 
char* const p2; 
const char* const p3; 



Constructor and Destructor
Every class has the following special methods: 

• Constructor: Called right AFTER an object is created in memory 

• Destructor: Called right BEFORE an object is deleted from memory  

The compiler automatically generates default versions, but you can 
provide user-defined implementations



What is the output? 

A.1 + 2j

B.3 + 4j

C.1 + 2j
  3 + 4j

D.None of the above

class Complex 
{ 
private: 
    double real; 
    double imag; 
public: 
    Complex(double re = 0, double im = 0); 
    ~Complex(){ print();} 
    double getMagnitude() const; 
    double getReal() const; 
    double getImaginary() const; 
    void print() const; 
    void conjugate(); 
    void setReal(double r); 
    void setImag(double r);    
};

void foo(){  
    Complex p(1, 2);           
    Complex *q = new Complex(3, 4); 
}



• Classes have member variables and member functions (method). An object 
is a variable where the data type is a class. 

• You should know how to declare a new class type, how to implement its 
member functions, how to use the class type. 

• Frequently, the member functions of an class type place information in the 
member variables, or use information that's already in the member variables. 

• New functionality may be added using non-member functions, friend 
functions, and operator overloading  

• If a class allocates data on the heap, then a user-defined destructor must be 
implemented to perform a clean-up procedure (de-allocate heap memory) 

   Summary



Next time
• Linked Lists and the rule of three


