
C++ OPERATOR OVERLOADING

DESTRUCTOR

Problem Solving with Computers-II

Read the syllabus. Know what’s required. Know how to get help.

Review Concepts from CS16
• Review basics of classes

• Defining classes and declaring objects

• Access specifiers: private, public

• Different ways of initializing objects and when to use each:

• Default constructor

• Parametrized constructor

• Parameterized constructor with default values

• Initializer lists

Today’s learning goals:
3

1. Operator overloading

• what is operator overloading?

• why/when would we need to overload operators?

• how to overload operators in C++ ?

2. Destructor:

• what is a destructor?

• why/when would we need one?

• how to implement a destructor?

How many objects of type Complex are created in main()?
4

class Complex

{

private:

 double real;

 double imag;

public:

 Complex(double re = 0, double im = 0);

 double getMagnitude() const;

 double getReal() const;

 double getImaginary() const;

 void print() const;

 void conjugate();

 void setReal(double r);

 void setImag(double r);

};

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

w.print();

}

A. One

B. Two

C. Three

D. Four

E. I am not sure . . .

Fill in the blank to print the values of the object on the heap
5

Desired output:

10 + 5j

 2 + 3j

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

w.print();

}

Review Constructor
• The constructor is a special method that is called right AFTER

an object is created in memory (on the heap or stack)

• The compiler automatically generates a default constructor

• But you can implement a user-defined version

New method: add()
7

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

p = ______________;

p.print();

}

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

p = ______________;

p.print()

}

Approach 1 Approach 2

New method: add()
8

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

p = add(*q, w);

p.print();

}

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

p = q->add(w);

p.print();

}

A: Approach 1 B: Approach 2

Overloading the + operator for Complex objects
9

p = add(x, w);

p = x.add(w);

 p = x + w;

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator
10

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

w.print();

q->print();

}

int main(){

Complex p;

Complex *q = new Complex(2, 3);

Complex w(10, -5);

w.conjugate();

cout << w;

cout << *q;

}

Before overloading the << operator After overloading the << operator

Select any equivalent C++ statement:

11

cout << w;

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

Select the function declaration that best matches the above call

12

operator<<(cout, w);

void operator<<(ostream &out,

 const Complex &c);

void Complex::operator<<(ostream &out);

A

B

Complex operator<<(ostream &out, Complex c);C

Select the function declaration that best matches the above call

13

Complex w(1, 10), x(5, 1);

cout<< w << x;

 void operator<<(ostream &out,

 const Complex &c);

A

B

C

Complex& operator<<(ostream &out,

 const Complex &c);

ostream& operator<<(ostream &out,

 const Complex &c);

Operator Overloading
We would like to be able to perform operations on two objects of the class using the
following operators:

<<

==

!=

+

-

and possibly others

Constant pointers and pointers to constants

const char* p1;

char* const p2;

const char* const p3;

Constructor and Destructor
Every class has the following special methods:

• Constructor: Called right AFTER an object is created in memory

• Destructor: Called right BEFORE an object is deleted from memory

The compiler automatically generates default versions, but you can
provide user-defined implementations

What is the output?

A.1 + 2j

B.3 + 4j

C.1 + 2j

 3 + 4j

D.None of the above

class Complex

{

private:

 double real;

 double imag;

public:

 Complex(double re = 0, double im = 0);

 ~Complex(){ print();}

 double getMagnitude() const;

 double getReal() const;

 double getImaginary() const;

 void print() const;

 void conjugate();

 void setReal(double r);

 void setImag(double r);

};

void foo(){

 Complex p(1, 2);

 Complex *q = new Complex(3, 4);

}

• Classes have member variables and member functions (method). An object
is a variable where the data type is a class.

• You should know how to declare a new class type, how to implement its
member functions, how to use the class type.

• Frequently, the member functions of an class type place information in the
member variables, or use information that's already in the member variables.

• New functionality may be added using non-member functions, friend
functions, and operator overloading

• If a class allocates data on the heap, then a user-defined destructor must be
implemented to perform a clean-up procedure (de-allocate heap memory)

 Summary

Next time
• Linked Lists and the rule of three

