C++ OPERATOR OVERLOADING
DESTRUCTOR

Problem Solving with Computers-l| C | '
L pclud® dos‘::; a::d;
usind “d‘ i~ 1 R}

Y
Read the syllabus. Know what'’s required. Know how to get help.

¢
%z:« -5

M-ello

\A

v

e
Review Concepts from CS16

* Review basics of classes

- Defining classes and declaring objects

* Access specifiers: private, public

- Different ways of initializing objects and when to use each:
* Default constructor
+ Parametrized constructor
- Parameterized constructor with default values
* Initializer lists

e
Today’s learning goals:

1. Operator overloading
« what is operator overloading?
« why/when would we need to overload operators?
* how to overload operators in C++ ?
2. Destructor:
* what is a destructor?
* why/when would we need one?

* how to implement a destructor?

How many objects of type Complex are created in main()?

int main(){ ¢, e class Complex
Complex p; & g Al heaf { o/
Complex *q = new Complex(2, 3); | Jrrivate: ; e ECriLed CoNSR
Complex w(10, —5); . double real; PO ”

w.conjugate(); blqo?ble imag; ‘Z
w.print(); public: /_/Q_’\

Complex(double re = 0, double im = 0);

: double getMagnitude() const;
Ll dioe O™ double getReal() const;
A. One ?b‘ \ V%'(. double getImaginary() const;
B. Two sN TF Y ~ void print() const;
Three void conjugate();
. Four void setReal(double r);
E. I am not sure . . . void setImag(double r);

< st };

?\E Compex (double <@ doub)e'u?

Ceol —fe

o, —0B)| ,

(oo NuksY S not (e when W&
delere \70\V\\ff$ A® Q‘D‘\"‘)\”
C/DW\?Y\(-a q/ y,

Fill in the blank to print the values of the object on the heap

int main()<{ Desired output:
Complex ' p; 10 + 5j
Complex *q = new Complex(2, 3); 2 + 3]
Complex w(10, -5); R VT3) teep

w.conjugate(); —
w.print(); Cl, ——9\ S \3 \
q,—2 pront (), - |
} (#4) - priav (Y

B
Review Constructor

* The constructor is a special method that is called right AFTER
an object is created in memory (on the heap or stack)
» The compiler automatically generates a default constructor

« But you can implement a user-defined version

New method: add()

int main(){ int main(){
Complex p; Complex p;
Complex *q = new Complex(2, 3); Complex *q = new Complex(2, 3);
Complex w(10, -5); Complex w(10, -5);
w.conjugate(); w.conjugate();
p = add (kJ)IWD). p=_qv-?a33(w);
p.print(); p.print()
I ¥
IApproach 1 I IApproach 2 I
mewmber Aunkm & dot :
TOW- e N 9 Member Aandion &

C_gmy\ﬁ(Caw\))\f)(

-
New method: add()

int main(){ int main(){
Complex p; Complex p;
Complex *q = new Complex(2, 3); Complex *q = new Complex(2, 3);
Complex w(10, -5); Complex w(10, -5);
w.conjugate(); w.conjugate();
p = add(xq, w); p = g—>add(w);
p.print(); - p.print();
I ¥
IA: Approach 1|-‘“0‘6\—W\€N\bf“ |B: Approach 2| onembey
o'\ g
CDW\X)]CX O\aa (Cm* (om?krs 1.7 1} ComP\C& a&é C

Comgy¥ Cmap\f’d':))/' (ompiex 9,')()

Overloading the + operator for Complex objects

p = add(x, w); p = x.aid_(w);

"

f: @Pemhsf-\'(ﬁl \,o) «A- OPeruM* (w)

P = X + W}

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator

int main(){ int main(){
Complex p; Complex p;
Complex *q = new Complex(2, 3); Complex *q = new Complex(2, 3);
Complex w(10, -5); Complex w(10, -5);
w.conjugate(); w.conjugate();
w.print(); cout << w;
g->print(); \cout << xq; |

I ¥

IBefore overloading the << operatorl IAfter overloading the << operator I

OLNCa Wy
ot /K@
D> JN

- W\ae\'&ds\e
ICOUt == W'— ‘ (iwz\ccc(‘, Lo

Select any equivalent C++ statement: >) 4;)
b'ovut»\ﬁ(((o " ae€

lw.operator<<(cout); | A (norh beoust genl)

lcout.operator<<(w); | v
loperator<<(cout, w); | @ v

loperator<<(cout, w); |

Select the function declaration that best matches the above call

A lvoid operator<<(ostream &out,
const Complex &c);

B|void Complex: :operator<<(ostream &out);

CJEomplex operator<<(ostream &out, Complex c);
puk Hus v ke con be peoblcmedse |

J |

Complex w(1l, 10), x(5, 1);
cout<< w << X;

Select the function declaration that best matches the above call

A volid operator<<(ostream &out,
const Complex &c);

Complex& operator<<(ostream &out,
const Complex &c);

B
C |ostream& operator<<(ostream &out,
const Complex &c);

e
Operator Overloading

We would like to be able to perform operations on two objects of the class using the
following operators:

<<

and possibly others

Constant pointers and pointers to constants

const charx pl;
charx const p2;

const charx const p3;

e
Constructor and Destructor

Every class has the following special methods:

 Constructor: Called right AFTER an object is created in memory
 Destructor: Called right BEFORE an object is deleted from memory
The compiler automatically generates default versions, but you can

provide user-defined implementations

\
((\U\/ \(L"\Axb (

void foo(){
Complex p(1, 2);
Complex *q = new Complex(3, 4);

What is the output?

1+2j

B.3 + 4j

D. None of the above

class Complex

{

private:
double real;
double imag;

public:
Complex(double re =
~Complex(){ print();
double getMagnitude(
double getReal() con
double getImaginary(
void print() const;
void conjugate();

9,
¥
)
st;
)

double im

const;

const;

void setReal(double r);
void setImag(double r);

0);

e
Summary

» Classes have member variables and member functions (method). An object
is a variable where the data type is a class.

* You should know how to declare a new class type, how to implement its
member functions, how to use the class type.

* Frequently, the member functions of an class type place information in the
member variables, or use information that's already in the member variables.

* New functionality may be added using non-member functions, friend
functions, and operator overloading

« If a class allocates data on the heap, then a user-defined destructor must be
implemented to perform a clean-up procedure (de-allocate heap memory)

Next time

- Linked Lists and the rule of three

