BINARY SEARCH TREES

Problem Solving with Computers-l| C | '
ae dosa:a;“:d;
"‘n.c“: na“\espac
pein . o \L\

Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[1o] =value =< a[hi].

- Ex. Binary search for 33.

T [o o e ol e

]is_ln \14
@1 2

|

lo

AR

hi

A tree has following general properties:

* One node is distinguished as a root;

» Every node (exclude a root) is connected
by a directed edge from exactly one other
node;

A direction is: parent -> children
» Leaf node: Node that has no children

9% nildlen al<c T and 5
fafem' °L 1 S 2
patent- 2 g s 2

Which of the following is/are a tree? oty S

oot L (oot
o ®

PO

e

E. All of A-C

Binary Search Trees

- What are the operations supported? -
olsi b\e WA 226+ O a\ﬂa,a; - g:&
olt Yae Opermhong O et

- What are the running times of these operations?
A

- How do you implement the BST i.e. operations supported by it?

e
Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
Min

Max
Successor mex: largong| velee
Predecessor mext gmalief] volue
Search

Insert

Delete

Print elements in order

Binary Search Tree — What is it?

Do the keys have to be integers?

Each node:

stores a key (k)

has a pointer to left child, right child
and parent (optional)

Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key
Node’s key < Keys in node’s right subtree

Which of the following is/are a binary search tree?

I
BSTs allow efficient search!

Start at the root;

Trace down a path by comparing k with the key of the
current node x:

 If the keys are equal: we have found the key
« If k <key[x] search in the left subtree of x
- If k > key[x] search in the right subtree of x

Search for 41, then search for 53

AnodeinaBST

class BSTNode {

public: \eAY
BSTNode* left;~
BSTNode* right; -~
BSTNode* parent; ~»
int const data; -~

BSTNode(const int & d) : data(d) {
left = right = parent = 0;
}
};

Define the BSTADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

cloess BSY %

Traversing down the tree

Suppose n is a pointer to the root. What is the output
of the following code:

n = n->left;
-

_n = n->right;
_cout<<n->data<<endl;
A. 42
B. 32

C. 12

<: ?) 41
. Segfault

Traversing up the tree

Suppose n is a pointer to the node with value 50. N
+ What is the output of the following code: = w/

,,(n = n—>parentJ

_~ nh = n->parent;

n = n->left;

cout<<n->data<<endl;
A. 42 o
@ 32
C. 12
D. 45
E. Segfault

Wi a whe loop Yo feadn Har oot Mode) gven
(t ¢

” ?o'm\a‘ b a mod,e,/ﬁ

> pofent D) %
hile (‘07’,9’,“ e

L
n= N a?&(en/

ks

Insert

*Insert 40
@ - Search for the key
@ @ - Insert at the spot you expected to find it

s /7
G, al, 2% s

I
Max

Yoot

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a
leaf node is encountered. The least node has the max
value

Binclde Limiteh?
Alg: int BST::)’ |
g:1n max () % \\‘w\i’f&é“\—?:: N\\V\“/ e e G @)

ijf ('1ool) rekun SH:: pumeetL- e o @

BNote +0 =0
whd< L‘I\—-‘a‘ib“‘k)% ‘
e f\'—.’ﬂs*/'

:‘d-u(‘!\ weododc Maximum = 20

Min

Goal: find the minimum key value in a BST
Start at the root.

Follow child pointers from the root, until a
leaf node is encountered

Leaf node has the min key value

Alg: int BST: :min ()

cbLos

How s L2 gpiss

A Done
0 @7\ Loocht) vE»"l\f&\/\

) S\'G‘H'Qa

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
@ e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Pre-order traversal: nice way to linearize your tree!

Lo Bt ool
2. [Traverse the left subtreé, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

2 (32 P [\ us (50 J
/]

T (42) Te L2
Desult O{, prinfive e Veys

\kg‘\ﬁ o ?‘&@{6@ INonevicd

Tk ;

? \,Tsew< o ‘ngert %N\wds N2, 22,12, Y\, 1S, $

D O m\ha\kj Wh’ BCT . e vl Creaks
&(wp BT

Do trder Toverscd o wieted fr inplemay

fon tepy LomsTadtoY % bot o -

Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

Predecessor: Next smallest element
e * What is the predecessor of 327

* What is the predecessor of 457

Successor: Next largest element

@ - What is the successor of 45?
- What is the successor of 507?

a Q - What is the successor of 607?

Delete: Case 1

e Case 1: Node is a leaf node
+ Set parent’s (left/right) child pointer to null

a @ * Delete the node

® o6 @

Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child

Delete: Case 3
e Case 3 Node has two children

- Can we still replace the node by one of its

a Q children? Why or Why not?

® o6 @

