
C++ STL : SET & MAP
 ITERATORS
Problem Solving with Computers-II

std::set: Balanced BST that stores unique keys

2

void printKeys(set<int>& s) {
 for(auto item : s){
 cout << item <<" ";
 }
 cout<<endl;
}

20
30

25

40

35 60set<int> s {30, 20, 25, 40, 35, 60};
printKeys(s);

An iterator is an object that behaves like a pointer

3

20
30

25

40

35 60

set<int> s {30, 20, 25, 40, 35, 60};
auto it = s.find(25);
cout << *it;
it++;

An iterator is an object that behaves like a pointer

4

20
30

25

40

35 60

set<int> s {30, 20, 25, 40, 35, 60};
auto it = s.find(25);
cout << *it;
it = s.find(32);

But what if the value we are searching for is not there?

Delete 25 from the set, then insert 26

5

20
30

25

40

35 60

set<int> s {30, 20, 25, 40, 35, 60};
auto it = s.find(25);
s.erase(it);
s.insert(26);

Iterating through set
6

20
30

25

40

35 60

void printKeys(set<int>& s) {
 auto it = s.begin();

while(it!= s.end()){
 cout << *it <<" ";
 it++;
 }
}

Does the above code work? Why or or Why not?
A. It works because the set class overloads the * and ++ operators
B. It works because the iterator class overloads the * and ++ operators
C. It doesn’t work because elements of the BST are not contiguous in memory
D. It doesn’t work because <fill in your reason>

Iterating through set
7

20
30

25

40

35 60

void printKeys(set<int>& s) {
 set<int>::iterator it = s.begin();

while(it!= s.end()){
 cout << *it <<" ";
 it++;
 }
}

Does the above code work? Why or or Why not?
A. It works because the set class overloads the * and ++ operators
B. It works because the iterator class overloads the * and ++ operators
C. It doesn’t work because elements of the BST are not contiguous in memory
D. It doesn’t work because <fill in your reason>

Storing a grocery list
Which data structure would you use to store a grocery list?
A . vector of strings
B. vector of vector
C. set containing (string, int) pair values
D. Something else

8

“Banana”, 2
“Apple” , 1
“Milk” , 3
“Bread”, 5

Insert the items in the grocery list into a BST, using the strings as keys.
Draw the resulting BST

9

“Banana”, 2
“Apple” , 1
“Milk” , 3
“Bread”, 5

std::map: Balanced BST that stores (key, value) pairs

10

map<string, int> groceries;
groceries[“Banana”] = 2;
groceries[“Apple”] = 1;
groceries[“Milk”] = 3;
groceries[“Bread”] = 5;

“Banana”, 2
“Apple” , 1
“Milk” , 3
“Bread”, 5

Other operations of map are very similar to set:
find()
erase()
Standard way of traversing the map (in order of keys) using iterators

Activity: merge similar items

11

Input: items1 = [[1,1],[4,5],[3,8]],
 items2 = [[3,1],[1,5]]
Output: [[1,6],[3,9],[4,5]]

Return a 2D vector: ret where ret[i] = [key_i, value_i],
with value_i being the sum of values of all items with key key_i.
The vector should be in ascending order of keys

(5 mins): Brainstorm ideas on possible strategies

Activity (5 mins): Working with std::map

12

items1 = [[1,1],[4,5],[3,8]]

Insert the elements of items1 in a BST (std:: map)
Draw the resulting BST

Activity (5 mins): Working with std::map
13

items1 = [[1,1],[4,5],[3,8]]

Insert the elements of items1 in a BST (std:: map)
Insert the elements of items2 into the BST
What should we do if a key already exists?

items2 = [[3,1],[1,5]]

 C++STL
• The C++ Standard Template Library is a handy set of three built-in
components:

• Containers: Data structures
• Iterators: Standard way to search containers
• Algorithms: These are what we ultimately use to solve problems

14

C++ STL container classes

15

array
vector

forward_list
list

stack
queue

set
map

unordered_set
unordered_map

priority_queue
multiset (non unique keys)

deque
multimap

bitset

