
FAST LOOKUP WITH HASHTABLES

Problem Solving with Computers-II

STD::UNDORDERED_SET
STD::UNORDERED_MAP

2

Hash table: Practical Applications

Network security
• Routers process 2-3 million packets per second
• Security strategies include:

• Dropping packets from blacklisted sources
• Need to lookup IP address in blacklist

3

Hash table: Practical Applications

Network security
• Routers process 2-3 million packets per second
• Need efficient lookup of IP address in a blacklist

Website analytics
• How many unique visitors to a website?
• Need efficient way to de-duplicate entires in very

large logs

Amazon makes approx.
$1.3 billion per day.

In July 2020, Amazon
sites had 213 million
unique visitors in the US.

Many applications rely on fast lookup in an evolving dataset

4

set<string> groceries;
groceries.insert(“Banana”) ;
groceries.insert(“Apple”);
groceries.insert(“Milk”);
groceries.insert(“Bread”);

 std::set
stores unique keys

map<string, int> groceries;
groceries[“Banana”] = 2;
groceries[“Apple”] = 1;
groceries[“Milk”] = 3;
groceries[“Bread”] = 5;

 std::map
stores key, value pairs

Last time: Balanced BST

5

unordered_set<string> groceries;
groceries.insert(“Banana”) ;
groceries.insert(“Apple”);
groceries.insert(“Milk”);
groceries.insert(“Bread”);

 std::unordered_set
stores unique keys

unordered_map<string, int> groceries;
groceries[“Banana”] = 2;
groceries[“Apple”] = 1;
groceries[“Milk”] = 3;
groceries[“Bread”] = 5;

 std::unordered_map
stores key, value pairs

Today: Hash table

Operations: find, insert, erase: all O(1)
* not a worst case guarantee
* only if the hash table is implemented properly

unordered_set<int> groceries;
groceries.insert(2) ;
groceries.insert(1);
groceries.insert(7);
groceries.insert(3);
groceries.find(2);

Hash table: an array with positions indexed by keys

0
1
2
3
4
5
6

7
8
9

0
1
2
3
4
5
6

7
8
9

unordered_set<string> groceries;
groceries.insert(“Banana”);

Hash table: an array with positions indexed by keys

Banana

index = Hash Code %
 SIZE_OF_ARRAY

3
4
5
6

7
8
9

unordered_set<string> groceries;
groceries.insert(“Banana”);
groceries.insert(“Apple”);

Hash table is just an array with positions indexed by keys

Banana

0
1
2

 Apple

index = Hash Code %
 SIZE_OF_ARRAY

3
4
5
6

unordered_set<string> groceries;
groceries.insert(“Banana”);
groceries.insert(“Apple”);
groceries.insert(“Milk”);

Hash table is just an array with positions indexed by keys

Banana

0
1
2

 Apple

Milk7
8
9

 index =
 Hash Code %
 SIZE_OF_ARRAY

5
6

unordered_set<string> groceries;
groceries.insert(“Banana”);
groceries.insert(“Apple”);
groceries.insert(“Milk”);
groceries.insert(“Bread”);

Hash table is an array with positions indexed by keys

Banana

0
1
2

 Apple

Milk7
8
9

Bread3
4

index = Hash Code %
 SIZE_OF_ARRAY

5
6

unordered_set<string> groceries;
groceries.insert(“Banana”);
groceries.insert(“Apple”);
groceries.insert(“Milk”);
groceries.insert(“Bread”);
groceries.find(“Banana”);

Hash table is an array with positions indexed by keys

Banana

0
1
2

 Apple

Milk7
8
9

Bread3
4

index = Hash Code %
 SIZE_OF_ARRAY

5
6

unordered_set<string> groceries;
groceries.insert(“Banana”);
groceries.insert(“Apple”);
groceries.insert(“Milk”);
groceries.insert(“Bread”);
groceries.insert(“Grape”);

Hash table is an array with positions indexed by keys

Banana

0
1
2

 Apple

Milk7
8
9

Bread3
4

index = Hash Code %
 SIZE_OF_ARRAY

Suppose our hash function outputs the hash code
12 for “Banana” and 32 for “Grape”, what happens
when we try to insert “Grape”?
A. “Grape” cannot be inserted
B. “Banana” should be replaced by “Grape”
C. Both “Banana” and “Grape” map to the same

index, resulting in a collision

Setup for hashing
Keep track of evolving set S whose
size is much less than the universe
of all possible keys

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

For example, size of a blacklist on an internet
router is typically a few hundred to tens of
thousands of entries

Design challenges
Keep track of evolving set S
whose size is much less than the
universe of all possible keys

For example, size of a blacklist on an internet
router is typically a few hundred to tens of
thousands of entries

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

• Deciding on collision resolution strategy
• Deciding the size of hash table
• Deciding the hash function

5
6

(Refined) Logical model of a hash table

Banana

0
1
2

 Apple

Milk7
8
9

Bread3
4

index = Hash Code %
 SIZE_OF_ARRAY

• Keys stored in buckets (array)

• Array positions are indexed by keys

• Multiple keys map to the same index

Buckets

Grape

Two sum problem
Given an unsorted array (A) of N unique integers between 0 and 1000,000, find the pair
of elements that sum to a given number T (assume a unique solution exists)

Method 1: Exhaustive search

What is the worst case run time of this method?

A. O(N)
B. (N logN)
C. O(N2)

procedure twosum(A: array of integers of size N, T: target sum)
pair<int, int> result
for (i = 0; i < N; i++){
 for (j = i+1; j < N; j++){
 if (A[i] + A[j]) == T
 result = (A[i], A[j]);
 }
}

 return result {pairs of values that add to T}

Two sum problem
Given an unsorted array (A) of N unique integers between 0 and 1000,000, find all pairs
of elements that sum to a given number T (assume unique solution exists)

Method 2: Sort, then search

What is the worst case run time of this method?

A. O(N)
B. (N logN)
C. O(N2)

procedure twosum(A: array of integers of size N, T: target sum)
 pair<int, int> result
 sort(A)
for (i = 0; i < N; i++){
 if(binary_search(T - A[i]))
 result = (A[i], T - A[i])
}

 return result {pairs values that add to T}

Two sum problem
Given an unsorted array (A) of N unique integers between 0 and 1000,000, find all pairs
of elements that sum to a given number T

Method 3: Use hash tables

Discuss a method that uses hash tables. What is the worst case run time of this method?

A. O(N)
B. (N logN)
C. O(N2)

procedure twosum(A: array of integers of size N, T: target sum)
pair<int, int> result

return result {pairs of values add to T}

Suppose you have a hash table that can hold 100 elements. It
currently stores 9 elements (in 9 different locations in the hash
table). What is the probability that your next insert will cause a
collision?
Assume a hash function that maps keys to slots with equal likelihood

A. 0
B. 9/100
C. 50/100
D. 74/100
E. 1

Suppose you have a hash table that can hold 100 elements. It
currently stores 30 elements (in one of 30 possible different
locations in the hash table). What is the probability that your
next two inserts will cause at least one collision?
Assume a hash function that maps keys to slots with equal likelihood.

A. 0
B. 9/100
C. 50/100
D. 74/100
E. 1

Consider a party with n people, each person’s birthday is on any day
of the year with equal likelihood. How large does n need to be before
there is a 50% chance that at least two people have the same
birthday.

A. 27
B. 50
C. 60
D. 200
E. 366

Suppose there are 365 slots in the hash table: M=365
What is the probability that there will be a collision when inserting N keys?
For N = 10, probN,M(collision) = 12%
For N = 20, probN,M(collision) = 41%
For N = 30, probN,M(collision) = 71%
For N = 40, probN,M(collision) = 89%
For N = 50, probN,M(collision) = 97%
For N = 60, probN,M(collision) = 99+%

So, among 60 randomly selected people, it is almost certain that at least one pair of
them have the same birthday

On average one pair of people will share a birthday in a group of about
 √ 2 * 365 = 27 people
In general: collisions are likely to happen, unless the hash table is quite sparsely filled

Probability of collision
If a hash table has M slots and N keys, assuming your hashing
function map keys to each slot with equal likelihood, the probability
of at least one collision is

PN,M(collision) = 1 −
N

∏
i=1

(M − (i − 1))
M

Hash table design (will be covered in depth in 130A)
Keep track of evolving set S
whose size is much less than the
universe of all possible keys

For example, size of a blacklist on an internet
router is typically a few hundred to tens of
thousands of entries

Universe of
possible keys, U
(Very large)

For example:
4.3 billion possible IP
addresses

• Deciding on collision resolution strategy
• Deciding the size of hash table
• Deciding the hash function

