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*The IBM 360, the IMP, and the workstations were all located in North Hall. 
 https://jeweledplatypus.org/news/text/ucsbnet.html

 

https://jeweledplatypus.org/news/text/ucsbnet.html


Kinds of data structures
2

Sequen&al, linear structures  
(arrays, linked lists)

Hierarchical structures  
(trees)

Graphs

Graphs are not hierarchical or sequen&al,  
no requirements for a “root” or “parent/child” 
rela&onships between nodes 
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Graphs consist of
• A collec&on of elements (“nodes” or “ver&ces”)
• A set of connec&ons (“edges” or “links” or “arcs”) 

between pairs of ver&ces.

Edges may be directed or undirected
Edges may have weight associated with them

Kinds of data structures

Sequen&al, linear structures  
(arrays, linked lists)

Hierarchical structures  
(trees)
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Graphs
• They consist of both ver&ces and edges
• They do NOT have an inherent order
• Edges may be weighed or unweighted
• Edges may be directed or undirected
• They may contain cycles 

Kinds of data structures

Sequen&al, linear structures  
(arrays, linked lists)

Hierarchical structures  
(trees)
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Graphs
Which of the following is true about graphs?
A. A graph can always be represented as a tree
B. A tree can always be represented as a graph
C. Both A and B
D. Neither A or B 

Kinds of data structures

Sequen&al, linear structures  
(arrays, linked lists)

Hierarchical structures  
(trees)



Why Graphs?
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Why Graphs?
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Social networks Semantic networks

Road networks

Computer networks*

Remember: If you can map your problem to a well-known graph 
problem, it usually means you can solve it fast!



Next assignment: Graph applications to Machine Learning
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https://youtu.be/aircAruvnKk?feature=shared We’ll listen to the first 5 minutes

https://www.youtube.com/watch?v=aircAruvnKk
https://youtu.be/aircAruvnKk?feature=shared
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         Neural Network

In a graph represen&ng a neural network, which of the 
following is FALSE? Discuss why in each case. 

A. Ver&ces represent neurons 
B. Edges represent layers 
C. Edges are directed 
D. Edges have weights  
E. None of the above 



Types of Graphs
10

Disconnected Connected Fully connected
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What is minimum and maximum number of 
edges in a connected undirected graph with n 
vertices (with no self-loops)? 

A. 0 and n 
B. (n - 1) and n (n - 1) / 2 
C. (n - 1) and n^2 
D. (n - 1) and 2^n 



Sparse vs. Dense Graphs
12

A dense graph is one where |E| is “close to” |V|2. 
A sparse graph is one where |E| is “closer to” |V|.
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          Neural Network

Is the neural network a sparse or dense graph? 

A. Sparse 
B. Dense 
C. Can’t say! 



Adjacency Matrix Representation of a Graph
14

Represent the graph by a n x n binary/integer/float valued adjacency matrix, A
n: number of vertices or |V| 
m: number of edges or |E|

How much space does an adjacency matrix 
require to represent a graph? 
A. O(n) 
B. O(m) 
C. O(n + m) 
D. O(n^2) 
E. O(mn)



Adjacency Matrix
15

Represent the graph by a n x n binary valued adjacency matrix, A 
A[i, j] = 1, if there is an edge from i to j

How much space does an adjacency matrix require 
to represent a graph? 
A. O(n) 
B. O(m) 
C. O(n + m) 
D. O(n^2) 
E. O(mn)

n: number of vertices or |V| 
m: number of edges or |E|



Adjacency List Representation of a Graph
16

• Vertices and edges stored as lists 
• Each vertex points to all its edges

How much space does an adjacency list 
require to represent a graph? 
A. O(n) 
B. O(m) 
C. O(n + m) 
D. O(n^2) 
E. O(m.n)
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Assume each vertex has a unique id between 0 and 5
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class graph{ 
       
  private: 
  _________ adjlist; 
};

Choose the ADT to represent the adjacency list 

A. vector<int> 
B. vector<unordered_set<int>> 
C. list<vector<int>> 
D. vector<list<int>> 
E. set<list<int>> 



Adjacency List: Weighted graph
18

• Vertices and edges stored as lists 
• Each vertex points to all its edges

5

0 
1 
2 

3 
4 

0.5

0.2
0.1

0.7

0.3

0.35

0.11

0.9



Neural Network structure for upcoming assignment

19

typedef std::vector<std::unordered_map<int, Connection> > AdjList; 



Understanding the Graph and NeuralNetwork classes 

20

typedef std::vector<std::unordered_map<int, Connection> > AdjList; 

class Graph { 

    public: 
        Graph(); 
        Graph(int size); 
        // Constructors and destructor 

        // TODO: graph methods 
        void updateNode(int id, NodeInfo n); 
        NodeInfo* getNode(int id) const; 
        void updateConnection(int v, int u, double w); 

        
    protected: 
        // protected to give NeuralNetwork access 

        // adjacency list containing weights for edges. 
        AdjList adjacencyList; 
         
        // vector storing node info 
        std::vector<NodeInfo*> nodes; 

        //Other functions 
};

class NeuralNetwork : public Graph { 

    public: 

        // Constructors and public functions 
           
        
    private: 

        // each index of layers holds a vector which 
contains the id's of every node in that layer.  
        std::vector<std::vector<int> > layers; 
  
        // contains ids of input nodes 
        std::vector<int> inputNodeIds; 

        // contains ids of output nodes 
        std::vector<int> outputNodeIds; 

// since NeuralNetwork inherits from Graph, you can imagine 
all of the graph members here as well... 

}; 



Activity: Draw the final NN by hand
21

void test_algorithm() { 
    cout << "test_algorithm" << endl; 
    NeuralNetwork nn(6); 

    NodeInfo n0("ReLU", 0, -0.2); 
    NodeInfo n1("ReLU", 0, 0.2); 
    NodeInfo n2("identity", 0, 0); 
    NodeInfo n3("sigmoid", 0, 0.98); 
    NodeInfo n4("ReLU", 0, 0.11); 
    NodeInfo n5("identity", 0, 0); 

    nn.updateNode(0, n0); 
    nn.updateNode(1, n1); 
    nn.updateNode(2, n2); 
    nn.updateNode(3, n3); 
    nn.updateNode(4, n4); 
    nn.updateNode(5, n5); 

    nn.updateConnection(2, 1, 0.1); 
    nn.updateConnection(2, 4, 0.2); 
    nn.updateConnection(2, 0, 0.3); 
    nn.updateConnection(5, 1, 0.4); 
    nn.updateConnection(5, 4, 0.5); 
    nn.updateConnection(5, 0, 0.6); 
    nn.updateConnection(1, 3, 0.7); 
    nn.updateConnection(4, 3, 0.8); 
    nn.updateConnection(0, 3, 0.9); 

    nn.setInputNodeIds({2, 5}); 
    nn.setOutputNodeIds({3}); 
}

Next, map out the information stored in: 
• nn.nodes 
• nn.adjacencyList 
• nn.inputNodeIds 
• nn.outputNodeIds

https://github.com/ucsb-cs24-w24/STARTER-lab07 

https://github.com/ucsb-cs24-w24/STARTER-lab07

