
GRAPHS

*The IBM 360, the IMP, and the workstations were all located in North Hall.
 https://jeweledplatypus.org/news/text/ucsbnet.html

https://jeweledplatypus.org/news/text/ucsbnet.html

Kinds of data structures
2

Sequen&al, linear structures
(arrays, linked lists)

Hierarchical structures
(trees)

Graphs

Graphs are not hierarchical or sequen&al,
no requirements for a “root” or “parent/child”
rela&onships between nodes

3

Graphs consist of
• A collec&on of elements (“nodes” or “ver&ces”)
• A set of connec&ons (“edges” or “links” or “arcs”)

between pairs of ver&ces.

Edges may be directed or undirected
Edges may have weight associated with them

Kinds of data structures

Sequen&al, linear structures
(arrays, linked lists)

Hierarchical structures
(trees)

4

Graphs
• They consist of both ver&ces and edges
• They do NOT have an inherent order
• Edges may be weighed or unweighted
• Edges may be directed or undirected
• They may contain cycles

Kinds of data structures

Sequen&al, linear structures
(arrays, linked lists)

Hierarchical structures
(trees)

5

Graphs
Which of the following is true about graphs?
A. A graph can always be represented as a tree
B. A tree can always be represented as a graph
C. Both A and B
D. Neither A or B

Kinds of data structures

Sequen&al, linear structures
(arrays, linked lists)

Hierarchical structures
(trees)

Why Graphs?

6

Why Graphs?

7

Social networks Semantic networks

Road networks

Computer networks*

Remember: If you can map your problem to a well-known graph
problem, it usually means you can solve it fast!

Next assignment: Graph applications to Machine Learning
8

https://youtu.be/aircAruvnKk?feature=shared We’ll listen to the first 5 minutes

https://www.youtube.com/watch?v=aircAruvnKk
https://youtu.be/aircAruvnKk?feature=shared

9

 Neural Network

In a graph represen&ng a neural network, which of the
following is FALSE? Discuss why in each case.

A. Ver&ces represent neurons
B. Edges represent layers
C. Edges are directed
D. Edges have weights
E. None of the above

Types of Graphs
10

Disconnected Connected Fully connected

11

What is minimum and maximum number of
edges in a connected undirected graph with n
vertices (with no self-loops)?

A. 0 and n
B. (n - 1) and n (n - 1) / 2
C. (n - 1) and n^2
D. (n - 1) and 2^n

Sparse vs. Dense Graphs
12

A dense graph is one where |E| is “close to” |V|2.
A sparse graph is one where |E| is “closer to” |V|.

13

 Neural Network

Is the neural network a sparse or dense graph?

A. Sparse
B. Dense
C. Can’t say!

Adjacency Matrix Representation of a Graph
14

Represent the graph by a n x n binary/integer/float valued adjacency matrix, A
n: number of vertices or |V|
m: number of edges or |E|

How much space does an adjacency matrix
require to represent a graph?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2)
E. O(mn)

Adjacency Matrix
15

Represent the graph by a n x n binary valued adjacency matrix, A
A[i, j] = 1, if there is an edge from i to j

How much space does an adjacency matrix require
to represent a graph?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2)
E. O(mn)

n: number of vertices or |V|
m: number of edges or |E|

Adjacency List Representation of a Graph
16

• Vertices and edges stored as lists
• Each vertex points to all its edges

How much space does an adjacency list
require to represent a graph?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2)
E. O(m.n)

5

0
1
2

3
4

Assume each vertex has a unique id between 0 and 5

17

class graph{

 private:
 _________ adjlist;
};

Choose the ADT to represent the adjacency list

A. vector<int>
B. vector<unordered_set<int>>
C. list<vector<int>>
D. vector<list<int>>
E. set<list<int>>

Adjacency List: Weighted graph
18

• Vertices and edges stored as lists
• Each vertex points to all its edges

5

0
1
2

3
4

0.5

0.2
0.1

0.7

0.3

0.35

0.11

0.9

Neural Network structure for upcoming assignment

19

typedef std::vector<std::unordered_map<int, Connection> > AdjList;

Understanding the Graph and NeuralNetwork classes

20

typedef std::vector<std::unordered_map<int, Connection> > AdjList;

class Graph {

 public:
 Graph();
 Graph(int size);
 // Constructors and destructor

 // TODO: graph methods
 void updateNode(int id, NodeInfo n);
 NodeInfo* getNode(int id) const;
 void updateConnection(int v, int u, double w);

 protected:
 // protected to give NeuralNetwork access

 // adjacency list containing weights for edges.
 AdjList adjacencyList;

 // vector storing node info
 std::vector<NodeInfo*> nodes;

 //Other functions
};

class NeuralNetwork : public Graph {

 public:

 // Constructors and public functions

 private:

 // each index of layers holds a vector which
contains the id's of every node in that layer.
 std::vector<std::vector<int> > layers;

 // contains ids of input nodes
 std::vector<int> inputNodeIds;

 // contains ids of output nodes
 std::vector<int> outputNodeIds;

// since NeuralNetwork inherits from Graph, you can imagine
all of the graph members here as well...

};

Activity: Draw the final NN by hand
21

void test_algorithm() {
 cout << "test_algorithm" << endl;
 NeuralNetwork nn(6);

 NodeInfo n0("ReLU", 0, -0.2);
 NodeInfo n1("ReLU", 0, 0.2);
 NodeInfo n2("identity", 0, 0);
 NodeInfo n3("sigmoid", 0, 0.98);
 NodeInfo n4("ReLU", 0, 0.11);
 NodeInfo n5("identity", 0, 0);

 nn.updateNode(0, n0);
 nn.updateNode(1, n1);
 nn.updateNode(2, n2);
 nn.updateNode(3, n3);
 nn.updateNode(4, n4);
 nn.updateNode(5, n5);

 nn.updateConnection(2, 1, 0.1);
 nn.updateConnection(2, 4, 0.2);
 nn.updateConnection(2, 0, 0.3);
 nn.updateConnection(5, 1, 0.4);
 nn.updateConnection(5, 4, 0.5);
 nn.updateConnection(5, 0, 0.6);
 nn.updateConnection(1, 3, 0.7);
 nn.updateConnection(4, 3, 0.8);
 nn.updateConnection(0, 3, 0.9);

 nn.setInputNodeIds({2, 5});
 nn.setOutputNodeIds({3});
}

Next, map out the information stored in:
• nn.nodes
• nn.adjacencyList
• nn.inputNodeIds
• nn.outputNodeIds

https://github.com/ucsb-cs24-w24/STARTER-lab07

https://github.com/ucsb-cs24-w24/STARTER-lab07

