Link ko hand ou,lE:h&?zys://bLE.LW/CSzlf-WZde—-Gro\pksﬂav\dou,l
of ¥

L L i

POP 10

GRAPH SEARCH

S

1

1 .
; ~ THE ARPA NETWORK
3 DEC (949

4 Nobdes

https://bit.ly/CS24W24-GraphsHandout

Adjacency List: Weighted graph

 Vertices and edges stored as lists
« Each vertex points to all its edges

Neural Network structure for upcoming assignment

typedef std::vector<std::unordered_map<int, Connection> > AdjList;

Input Layer Hidden Layer Output Layer
Activation: Identity Activation: ReLU Activation:

i

sigmoid

id: 3
y Vvalue: h;
bias: by
W1

id: 1 / Wi w7
value: X1 \
id: 4 id: 6

value: hy Wg va}lue: Y1
bias: b, bias: by

id: 2

value: x» \W

id: 5
value: hs
bias: bs

(® @®
N

. S
Understanding the Graph and NeuralNetwork classes

typedef std::vector<std::unordered_map<int, Connection> > AdjList;
class Graph { class NeuralNetwork : public Graph {

public: public:
Graph();
Graph(int size); // Constructors and public functions

// Constructors and destructor

// TODO: graph methods private:
void updateNode(int id, NodeInfo n);

NodeInfo*x getNode(int id) const;

void updateConnection(int v, int u, double w);

// each index of layers holds a vector which
contains the id's of every node in that layer.
std::vector<std::vector<int> > layers;

// contains ids of input nodes
protected: std::vector<int> inputNodeIds;
// protected to give NeuralNetwork access

// contains ids of output nodes
// adjacency list containing weights for edges. std::vector<int> outputNodelds;
AdjList adjacencylList;

// vector storing node info // since NeuralNetwork inherits from Graph, you can imagine
std::vector<NodeInfox> nodes; all of the graph members here as well...

//0ther functions };

void test_algorithm() {

cout << "rest alooriem” << endl; | - ACtivity: Draw the final NN by hand

NeuralNetwork nn(6);

NodeInfo n@("RelLU", 0, -0.2);
NodeInfo n1("RelLU", 0, 0.2);
NodeInfo n2("identity", 0, 0);
NodeInfo n3("sigmoid", 0, 0.98);
NodeInfo n4("RelLU", 0, 0.11);
NodeInfo n5("identity", 0, 0);

nn.updateNode(@, no@);
nn.updateNode(1, nl);
nn.updateNode(2, n2);
nn.updateNode(3, n3);
nn.updateNode(4, n4);
nn.updateNode(5, n5);

nn.updateConnection(2,
nn.updateConnection(2,
nn.updateConnection(2,
nn.updateConnection(5,
nn.updateConnection(5,
nn.updateConnection(5,
nn.updateConnection(1,
nn.updateConnection(4,
nn.updateConnection(0,

-

-

- -

Next, map out the information stored in:
* Nn.nodes

e nn.adjacencylList

nn.setInputNodeIds ({2, 5}); °nNn. inpUtNOdEIdS

nn.setOutputNodeIds({3}); nn. OUtpUtNOdEIdS

WwwoprrobrbEK
(SRRSO NSRS R

- - - -

https://github.com/ucsb-cs24-w24/STARTER-lab07

How does information flow in a NeuralNetwork 7

- : “Hidden layers”
Training in i

progress. . .

—= O

2
3
4
5

-~ o

© oo

How does this network learn the appropriate weights and biases just by looking at

- layer determine the activations of the next layer.

Training Evaluation/Prediction
Learn network parameters Network produces outputs from inputs

Credits: 3Blue1Brown

https://www.youtube.com/@3blue1brown

Graph search: general approach

Starting with a source node
* find everything that can be explored
« don’t explore anything twice

Breadth First Traversal: Sketch of Algorithm

Explore all the nodes reachable from a
given node before moving on to the next
node to explore

- In general, a search algorithm would explore (or “visit”) from a source vertex
- all the vertices reachable ,
- never exploring out from the same vertex twice

- How does the Breadth First Search/Traversal algorithm ensure this?

Breadth First Algorithm and Visual C

Input: Graph G = (V, E), source s
« Start at source s;
« Mark all the vertices as “not visited”
 Mark s as visited
* push s into a queue
* while the queue is not empty:
* pop the vertex u from the front of the queue
e for each of u’s neighbor (v)
* If v has not yet been visited:
* Mark v as visited
* Push v in the queue

https://visualgo.net/en/dfsbfs

https://visualgo.net/en/dfsbfs

Graph search: breadth first (BFS)

Explore all the nodes reachable from a
given node before moving on to the next
node to explore

Assume BFS chooses the lower number node to explore
first, in what order does BFS visit the nodes in this graph

A.0,1,2,3,4,5
B.0,1,3,2,4,5
C.0,2,3,1,4,5
D.0,2,1,3,4,5
E. Something else

There are n rooms Labeled from © ko n - 1 and all the rooms are
Llocked except for room O, Your qoal is to visit all the rooms.
However, you cannol enter a locked room without having its key,

When you visit a room, you may find a seb of distinct keys in ik,
Each ey has a number on ik, denoting which room it unlocks, and
you can take all of them with you to unlock the other rooms.

Given an array rooms where rooms[i] is the set of ieys that you

coan obtain i you visited room i, returin true i you can visit all bhe
rooms, or false otherwise.

https://leetcode.com/problems/keys-and-rooms/description/

https://leetcode.com/problems/keys-and-rooms/description/

Input: rooms = [[1],[2, 31,011,111

Output: true

Explanation:

We visit room @ and pick up key 1.

We then visit room 1 and pick up keys 2 and 3.

We then visit room 2 and pick up key 1.

We then visit room 3.

Since we were able to visit every room, we return true.

Can we cast Ehis as a graph expi.or&&iom Fzrobi&m?
A, Yes
B. No

https://leetcode.com/problems/keys-and-rooms/description/

https://leetcode.com/problems/keys-and-rooms/description/

Implement these functions in your handout

class graph{
public:

graph(int n = 0) { // nis the number of vertices

Y
A void addEdge(int from, int to);

B bool hasEdge(int i, int j) const;

C vector<bool> bfs(int source) const;
D bool isValidPath(const vector<int> & path) const; // returns true if the input path exists

E bool isReachable(int source, int dest) const; // returns true if a path exists from source to dest

private:
vector< > adjList;

Link to hand out:https://bit.ly/CS524W24-GraphsHandout

https://bit.ly/CS24W24-GraphsHandout

