
FINAL WRAP UP!

Problem Solving with Computers-II

Preparing for the final exam…
2

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

Problem:

Find the lowest common ancestor of

nodes (u, v) in a binary tree

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

Approach 1: Turn definitions into an algorithm

LCA(r: root of tree, u, v):

 Find the path from root(r) to u

 Find the path from root(r) to v

 Return common node on both paths

 farthest from the root(r)

Ancestor(u):
any node on a path ending in u

Explore – Depth First on a Graph

exploreDFS(v)

 v.visited ← true

 For each edge (v,w)

 If not w.visited

 exploreDFS(w)

A

B
C

D

E

F

G
H

Modify exploreDFS to find paths

exploreDFS(v)

 v.visited ← true

 For each edge (v,w)

 If not w.visited

 exploreDFS(w)

w.prev ← v

A

B
C

D

E

F

G
H

Explore – Depth First on a Tree

exploreDFS(r: root node):

 Print r.val

 if(r.left) exploreDFS(r.left)

 if(r.right) exploreDFS(r.right)

Modify DFS to find node u

DFS_FindNode(r, u, found):

 if(r.left ___________) DFS_FindNode(r.left,____________)

 if(r.right __________) DFS_FindNode(r.right,___________)

Modify DFS to find the path to node u

DFS_FindPath(r, u, found, path):

 if(r.val == u.val) {found ← true; return;}

 if(r.left ___________) DFS_FindPath(r.left,______________)

 if(r.right __________) DFS_FindPath(r.right,_____________)

https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/

Approach 2: Divide and Conquer

LCA(r: root of tree, u, v):

 If(r.left && u,v exist in r.left)

 Return LCA(r.left, u, v)

 If(r.right && u,v exist in r.right)

 Return LCA(r.right, u, v)

 If(u or v exists in r.left && u or v exists in r.right):

 Return ___________________________

 If(u or v exists in r.left || u or v exists in r.right):

 If(r.val == u.val ||r.val== v.val) Return___________________

Learning goals
11

Data Structures and C++ Complexity Analysis

• Design and implement larger programs that run fast
• Organize data in programs using data structures
• Analyze the complexity of your programs
• Understand what goes on under the hood of programs

Resources for the Final Exam
12

Data Structures and C++ Complexity Analysis

• Office hours will be offered until Wed of Finals Week
• Code from lectures: https://github.com/ucsb-cs24-w24/cs24-w24-lectures
• Practice Problems and Labs: https://ucsb-cs24.github.io/w24/
• Past Exams: Available on Canvas
• Tool to visualize data structures: https://visualgo.net/

https://github.com/ucsb-cs24-w24/cs24-w24-lectures
https://ucsb-cs24.github.io/w24/
https://visualgo.net/

Break: Please take a moment to fill the course evaluations!

Tips for Technical Interviews
1. Listen carefully
2. Draw an example
3. State the brute force or a partially correct solution

• then work to get at a better solution
4. Optimize:

• Make time-space tradeoffs to optimize runtime
• Precompute information: Reorganize the data e.g. by sorting

5. Solidify your understanding of your algo before diving into writing code.
6. Start coding!

14

Interview practice!
Write a ADT called minStack that provides the following methods
• push() // inserts an element to the “top” of the minStack
• pop() // removes the last element that was pushed on the stack
• top () // returns the last element that was pushed on the stack
• min() // returns the minimum value of the elements stored so far

15

Practice the interview tips:
• Draw/solve a small example! (2 min)

• Think of the most straightforward approach (1 min)
• Evaluate its performance (1 min)
• Think of another approach and evaluate it (5 min)

• Can you trade off space/memory for better runtime?
• Pick the most promising approach and start coding! (10 min)

Thank you and all the best !

