
ABSTRACT DATA TYPES

Problem Solving with Computers-II

Today’s goals
• Defining Abstract Data Types

• Different ways of initializing objects and when to use each:

• Default constructor

• Parametrized constructor

• Parameterized constructor with default value

• Operator overloading as an example of compile time polymorphism

• what is operator overloading?

• why/when would we need to overload operators?

• how to overload operators in C++ ?

• Linked List

• Procedural implementation vs OOP style

• Using recursion to implement linked list operations

Abstract Data Type (ADT)
class IntList {

public:

 IntList();

 // other public methods

private:

 struct Node {

 int info;

 Node* next;

 };

 Node* head;

 Node* tail;

};

• Abstract Data Type (ADT) is defined by
data + operations on the data.

• Key features

• Abstraction: hide implementation details

• Encapsulation: bundle data and

operations on the data, restrict access to
data only through permitted operations

Questions to ask about any ADT:

4

• What operations does the ADT support?

 The list ADT supports the following operations on a sequence:

1. push_front (add a value to the beginning of the sequence)

2. push_back (add a value to the end of the sequence)

3. pop_front (delete the first value in the sequence)

4. pop_back (delete the last value in he sequence)

5. front() (return the first value)

6. back() (return the last value)

7. delete (a value)

8. print all values

• How do you implement each operation (data structure used)?

• How fast is each operation?

4050 2010

head

int IntList::push_front(int value){

 //add value to the beginning of the sequence

}

Recursion

Zooming into a Koch’s snowflake

Sierpinski triangle

Using recursion to implement operators involving a linked list

4050 2010

head

int IntList::sum(){

 //return the sum of the sequence

}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on

• In that case define a new function with appropriate parameters: This is

your helper function

• Call the helper function to perform the recursion

• Usually the helper function is private

For example

Int IntList::sum(){

return sum(head);

 //helper function that performs the recursion.

}

4050 2010

head

int IntList::sum(Node* p){

}

4050 2010

head

bool IntList::clear(Node* p){

}

11

Approximate Terminology
• instance = object

• field = instance variable

• method = function

• sending a message to an object = calling a function

Will this code compile?
12

class Complex

{

private:

 double real;

 double imag;

public:

 double getMagnitude() const;

 double getReal() const;

 double getImaginary() const;

 void print() const;

 void conjugate();

 void setReal(double r);

 void setImag(double r);

};

int main(){

Complex p;

Complex w(1, 2);

p = w;

p.conjugate();

p.print();

}

A. Yes

B. No

C. I am not sure . . .

Will this code compile?
13

class Complex

{

private:

 double real;

 double imag;

public:

 Complex(double re = 0, double im = 0);

 double getMagnitude() const;

 double getReal() const;

 double getImaginary() const;

 void print() const;

 void conjugate();

 void setReal(double r);

 void setImag(double r);

};

int main(){

Complex p;

Complex w(1, 2);

p = w;

p.conjugate();

p.print();

}

A. Yes

B. No: We need a

parametrized constructor

C. I am not sure . . .

Polymorphism: same code different behavior
Example: overloading functions, operator overloading

Overloading the + operator for Complex objects
15

 p = q + w;

Goal: We want to apply the + operator to Complex type objects

New method: add()
16

int main(){

Complex p;

Complex q(2, 3);

Complex w(10, -5);

w.conjugate();

p = add(q, w);

p.print();

}

int main(){

Complex p;

Complex q(2, 3);

Complex w(10, -5);

w.conjugate();

p = q.add(w);

p.print()

}

Approach 1 Approach 2

Overloading the + operator for Complex objects
17

p = add(q, w);

p = q.add(w);

 p = q + w;

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator
18

int main(){

Complex w(10, -5);

w.conjugate();

w.print();

}

int main(){

Complex w(10, -5);

w.conjugate();

cout << w;

}

Before overloading the << operator After overloading the << operator

Select any equivalent C++ statement:

19

cout << w;

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

Select the function declaration that does NOT match the above
call

20

operator<<(cout, w);

void operator<<(ostream &out,

 const Complex &c);

void Complex::operator<<(ostream &out);

A

B

Complex operator<<(ostream &out,

 Complex c);

C

Operator Overloading
We would like to be able to perform operations on two objects of the class using the
following operators:

<<

==

!=

+

-

and possibly others

Overloading Operators for IntList
In lab02 you will overload operators for the IntList ADT

==

!=

+ (list concatenation)

<< (overloaded stream operation to print the sequence)

23

Some advice on designing classes
• Always, always strive for a narrow interface

• Follow the principle of abstraction and encapsulation:

• the caller should know as little as possible about how the method does
its job

• the method should know little or nothing about where or why it is being
called

• Your class is responsible for it’s own data; don’t allow other classes to
easily modify it! Make as much as possible private

