ABSTRACT DATATYPES

Problem Solving with Computers-I| C
| ' GitHub
3080
o ma"»“u,.\ugza "5‘15‘::23“!2 ' J L

e
Today's goals

* Defining Abstract Data Types
* Different ways of initializing objects and when to use each:
* Default constructor
- Parametrized constructor
- Parameterized constructor with default value
- Operator overloading as an example of compile time polymorphism
- what is operator overloading?
- why/when would we need to overload operators?
- how to overload operators in C++ ?
* Linked List
* Procedural implementation vs OOP style
» Using recursion to implement linked list operations

e
Abstract Data Type (ADT)

- Abstract Data Type (ADT) is defined by
data + operations on the data.

- Key features
- Abstraction: hide implementation details

- Encapsulation: bundle data and
operations on the data, restrict access to private:
data only through permitted operations struct Node {
int info;
Node* next;

class IntList {
public:
IntList();
// other public methods

}i

Node* head;

Node* tail;
}i

T
Questions to ask about any ADT:

 What operations does the ADT support?
The list ADT supports the following operations on a sequence:
1. push_front (add a value to the beginning of the sequence)
2. push_back (add a value to the end of the sequence)
3. pop_front (delete the first value in the sequence)
4. pop_back (delete the last value in he sequence)
5. front() (return the first value)
6. back() (return the last value)
7. delete (a value)
8. print all values
 How do you implement each operation (data structure used)?
 How fast is each operation?

head EF‘}_»C —

(e

pad €

/)

int IntList::push front(int value){

//add value to the beginning of the sequence

Recursion

Sierpinski triangle

Using recursion to implement operators involving a linked list

head t?}_»(—

(e

pad €

int IntList::sum(){

//return the sum of the sequence

e
Helper functions

« Sometimes your functions takes an input that is not easy to recurse on

* In that case define a new function with appropriate parameters: This is
your helper function

 Call the helper function to perform the recursion

« Usually the helper function is private

For example

Int IntList::sum(){

return sum(head);
//helper function that performs the recursion.

head EF}»C =

(e

pad €

int IntList::sum(Node* p){

head EF}_»C =

(e

pad €

bool IntList::clear(Node* p){

Approximate Terminology

* instance = object

- field = instance variable

- method = function

- sending a message to an object = calling a function

2
Will this code compile?

class Complex
{
private:
double real;
double imag;
public:
double getMagnitude() const;

int main(){
Complex p;
Complex w(1, 2);

‘d

P = W,
p.conjugate();
p.print();

double getReal() const;
double getImaginary() const;
void print() const;

o’ void conjugate();

A. Yes N0 Iﬂﬁ
No becouo™ Ufl\ﬂw void setReal(double r);

I am not sure . . . void setImag(double r);

.
Will this code compile?

int main(){
Complex p;
Complex w(1, 2);

class Complex
{
private:
double real;
double imag;
public:
Complex(double re = 0, double im

P =W,
p.conjugate();
p.print();

double getMagnitude() const;
double getReal() const;
double getImaginary() const;
Yes void print() const;

No: We need a void conjugate();
parametrized constructor void setReal(double r);

C. I am not sure . . . void setImag(double r);

w >

Polymorphism: same code different behavior

Example: overloading functions, operator overloading

X Y ¥4
| O 20 20

\ Y/ M CQ!D wW\A ’
h Heﬂou Y Loe'a i

I
Overloading the + operator for Complex objects

Goal: We want to apply the + operator to Complex type objects

S T
New method: add()

int main()<{ int main(){
Complex p; Complex p;
Complex q(2, 3); Complex q(2, 3);
Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate();kﬁr'
p = add(qg, w); p = q.add(w);
p.print(); p.print()

Approach 1 Approach 2

Overloading the + operator for Complex objects

p = add(qg, w); p = g.add(w);
E——
P: OFCF%‘Df'\' (%/Uo') ? = %. OP{(W"’ (U«)B

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator

int main(){ int main(){
Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate();
w.print(); cout << w;

} }

Before overloading the << operator After overloading the << operator

cout << w;

Select any equivalent C++ statement:

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

operator<<(cout, w);
Select the function declaration that does NOT match the above

vold operator<<(ostream &out,
const Complex &c);

void Complex::operator<<(ostream &out);

Complex operator<<(ostream &out,
Complex c);

o

e
Operator Overloading

We would like to be able to perform operations on two objects of the class using the
following operators:

<<

|=
+

and possibly others

e
Overloading Operators for IntList

In lab02 you will overload operators for the IntList ADT

+ (list concatenation)
<< (overloaded stream operation to print the sequence)

Some advice on designing classes

- Always, always strive for a narrow interface
- Follow the principle of abstraction and encapsulation:
- the caller should know as little as possible about how the method does
its job
- the method should know little or nothing about where or why it is being
called

* Your class is responsible for it’s own data; don’t allow other classes to
easily modify it! Make as much as possible private

