
OPERATOR OVERLOADING (CONTD.)
DYNAMIC RESOURCE MANAGEMENT

Problem Solving with Computers-II

Today’s goals
• Operator overloading (contd)
• Dynamic memory and common errors
• We want to understand the what, why, and how of the C++ Big Three:

• Destructor

• Copy constructor

• Copy assignment operator

Overloading the + operator for Complex objects
3

 z = x + y + w;

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator
4

int main(){
Complex w(10, -5);
w.conjugate();
w.print();

}

int main(){
Complex w(10, -5);
w.conjugate();
cout << w;

}

Before overloading the << operator After overloading the << operator

Select any equivalent C++ statement:

5

cout << w;

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

Select the function declaration that matches the above call

6

cout<< w << x; //w, x are of type Complex

void operator<<(ostream &out,
 const Complex &c);

void Complex::operator<<(ostream &out);

A

B

ostream& operator<<(ostream &out,
 const Complex &c);

C

Operator Overloading
We would like to be able to perform operations on two objects of the class using the
following operators:
<<
==
!=
+
-
and possibly others

Dynamic Memory: common errors
• Memory Leak: Program does not free memory allocated on the heap.

• Segmentation Fault: Code tries to access an invalid memory location

C++Big Four: Special functions of any C++ class

• Constructor

• Destructor

• Copy constructor

• Copy assignment operator

The compiler automatically generates default versions for all of these,
but you can provide user-defined implementations.

RULE OF THREE
If a class uses dynamic memory, you usually need to provide your
implementation of the destructor. If a class implements one (or more) of the
following it should probably implement all three:
1. Destructor
2. Copy constructor
3. Copy assignment

• What is the behavior of these defaults?
• What is the desired behavior ?
• How should we over-ride these methods?

void test_0(){
IntList x;
x.push_front(10);

 x.print();
}

What is the result of running the above code?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. None of the above

Assume:
* Default destructor
* Default copy constructor
* Default copy assignment

Concept Question

head

(A): head pointer
(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

IntList::~IntList(){
delete head;

}

Which of the following objects are deleted when the destructor of IntList is called?

 class Node {
 public:
 int data;
 Node *next;
 };

Copy constructor
• Parameterized constructor whose first argument is a class object
• initializes a (new) object using an existing object

In which of the following cases is the copy constructor called?

A. IntList x;
 IntList y;

B. Complex(1, 2);
 Complex p2(p1);

C. Complex* p1 = new Complex(1, 2);

D. B & C
E. A, B & C

Behavior of default copy constructor
void test_copy_constructor(){

IntList x;
x.push_front(10);
x.push_front(20);
IntList y(x);
// calls the copy c’tor
x.clear();
y.print();

} Assume:
destructor: user-defined
copy constructor: default
copy assignment: default

What is the output?
A. No output
B. 20, 10
C. Segmentation fault

Copy assignment (operator=)
• For existing objects x, y, this statement calls the operator= function:

 x = y;
• Default behavior: Copies the member variables of rhs object (y) to lhs object (x)

Complex x(1, 2);
Complex y;
y = x;
cout << y;

Behavior of default copy assignment
void test_default_assignment_2(){
 IntList x, y;
 x.push_front(10);
 x.push_front(20);

y = x;
y.print()

}

Assume:
* User-defined destructor
* Default copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 20, 10
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

Behavior of default copy assignment
void test_default_assignment_3(){
 IntList x;
 x.push_front(10);
 x.push_front(20)
 IntList y(x);

y.push_front(30);
y.push_front(40);
y = x;
y.print()

}
Assume:
* User-defined destructor
* User-defined copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 20, 10
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

