BINARY SEARCH TREES

Problem Solving with Computers-Il C++



L
Binary Search

- Binary search. Given value and sorted array a[], find index 1 such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value = a[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14

lo hi



A tree has following general properties:

* One node 1s distinguished as a root;

* Every node (exclude a root) 1s connected
by a directed edge from exactly one other
node;

A direction 1s: parent -> children
e Leaf node: Node that has no children




Which of the following is/are a tree?

A @

B.

D.A&B

E. All of A-C



Binary Search Trees

- What are the operations supported?
- What are the running times of these operations?

- How do you implement the BST i.e. operations supported by it?



N
Binary Search Tree — What is it?

« Each node:
@ « stores a key (k)
* has a pointer to left child, right child
@ e and parent (optional)
é « Satisfies the Search Tree Property
O @ For any node,

Keys in node’s left subtree < Node’s key
Node’s key < Keys in node’s right subtree

Do the keys have to be integers?



Which of the following is/are a binary search tree”?

@

D.
a @ E. More than one of these



B
BSTs allow efficient search!

Start at the root;
e + Trace down a path by comparing k with the key of the
current node Xx:
@ e - If the keys are equal: we have found the key
- If k <key[x] search in the left subtree of x
@ 0 @ - If k> key[x] search in the right subtree of x

@ Search for 41, then search for 53
diSe<ib



Insert - Insert 40

@ - Search for the key
e e - Insert at the spot you expected to find it



L
Min/Max

Which of the following described the algorithm to
@ find the maximum value in the BST?

e @ A. Return the root node’s value
B. Follow right child pointers from the root, until a node
0 @ with no right child is encountered, return that node’s key

C. Follow left child pointers from the root, until a node
with no left child is encountered, return that node’s key



Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order




class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode (int d) : data(d) {
left = right = parent = nullptr;
}
};



In order traversal: print elements in sorted order

@ Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
a e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)



Path — a sequence of (zero or more) connected nodes.

Length of a path - number of edges traversed on the path

Height of node — Length of the longest path from the node to a leaf node.
Height of the tree - Length of the longest path from the root to a leaf node.

“

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45



Write a member function for the BST ADT to compute its height

c. @ D.@




