

BINARY SEARCH TREES

Problem Solving with Computers-II

Binary Search
• Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

• Invariant. Algorithm maintains a[lo] ≤ value ≤ a[hi].

• Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Trees
3

 A tree has following general properties:
	 •	 One node is distinguished as a root;
	 •	 Every node (exclude a root) is connected

by a directed edge from exactly one other
node;

 A direction is: parent -> children
• Leaf node: Node that has no children

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

4

Binary Search Trees
• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?

5

Binary Search Tree – What is it?

42

32

12

45

41 50

6

Do the keys have to be integers?

• Each node:
• stores a key (k)
• has a pointer to left child, right child

and parent (optional)
• Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key
Node’s key < Keys in node’s right subtree

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

BSTs allow efficient search!

8

• Start at the root;
• Trace down a path by comparing k with the key of the

current node x:
• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x

Search for 41, then search for 53

42

32

12

45

41 50

9

Insert
• Insert 40
• Search for the key
• Insert at the spot you expected to find it

42

32

12

45

41 50

10

Min/Max
Which of the following described the algorithm to
find the maximum value in the BST?

A. Return the root node’s value

B. Follow right child pointers from the root, until a node
with no right child is encountered, return that node’s key

C. Follow left child pointers from the root, until a node
with no left child is encountered, return that node’s key

42

32

12

45

41 50

Define the BST ADT

42

32

12

45

41 50

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(int d) : data(d) {
 left = right = parent = nullptr;
 }
};

12

13

In order traversal: print elements in sorted order

42

32

12

45

41 50

Algorithm Inorder(tree)
 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
 2. Visit the root.
 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

14

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of (zero or more) connected nodes.
• Length of a path - number of edges traversed on the path
• Height of node – Length of the longest path from the node to a leaf node.
• Height of the tree - Length of the longest path from the root to a leaf node.

Write a member function for the BST ADT to compute its height

42

32

12

32

4212

A. B. D.C. 32

12

32

