BINARY SEARCH TREES
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Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.
- Invariant. Algorithm maintains a[lo] =value = alhi].
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A tree has following general properties:

* One node is distinguished as a root;
» Every node (exclude a root) 1s connected
by a directed edge from exactly one other
node;
A direction is: parent -> children
» Leaf node: Node that has no children
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Which of the following is/are a tree?
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E. All of A-C




Binary Search Trees

- What are the operations supported?
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- What are the running times of these operations?
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- How do you implement the BST i.e. operations supported by it?



Binary Search Tree — What is it?

LagfF ¥ - Each node:
TeU® « stores a key (k)
* has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

For any node,
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Do the keys have to be integers?




Which of the following is/are a binary search tree?
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e
BSTs allow efficient search!

Start at the root;

Trace down a path by comparing k with the key of the
current node X:

- If the keys are equal: we have found the key
- If k <key[x] search in the left subtree of x

- If k> key[x] search in the right subtree of x
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Search for 41, then search for 53
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Insert *Insert 40

e - Search for the key
e e - Insert at the spot you expected to find it



Which of the following described the algorithm to
find the maximum value in the BST?

A. Return the root node’s value
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@ Follow right child pointers from the root, until a node
ith no right child is encountered, return that node’s key
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C. Follow left child pointers from the root, until a node
with no left child is encountered, return that node’s key
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Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order




class BSTNode { BCT l\“O& ufeb\i'

public:
BSTNode* left;
BSTNode* right; datar
BSTNode* parent;
int const data;

le&F
BSTNode (1int d) : data(d) { (b
left = right = parent = nullptr;
}
}i
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In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)

l 2. Visit the root.
| @ e 3. Traverse the right subtree, i.e., call Inorder(right-subtree)



Path — a sequence of (zero or more) connected nodes.

Length of a path - number of edges traversed on the path

Height of node — Length of the longest path from the node to a leaf node.
Height of the tree - Length of the longest path from the root to a leaf node.
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BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45



Write a member function for the BST ADT to compute its height




