BINARY SEARCH TREES

Problem Solving with Computers-I| C | '
Lon 4105::53:&
‘\:‘::nq nase=? A
wa*“‘l.\ 13 e

e
Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.
- Invariant. Algorithm maintains a[lo] =value = alhi].

T %
* Ex. Binary search for 33. LR LAY 5

- — AN
@6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 \J

| |

lo hi

A tree has following general properties:

* One node is distinguished as a root;
» Every node (exclude a root) 1s connected
by a directed edge from exactly one other
node;
A direction is: parent -> children
» Leaf node: Node that has no children

Node L s paias 4 % 2L

Which of the following is/are a tree?

A. ‘ B

.«‘“@

s I rula o

'A&B \«zq m“ @ #9

E. All of A-C

Binary Search Trees

- What are the operations supported?

G Seardn} foor Tneert

- What are the running times of these operations?
e

L Jelefitne

- How do you implement the BST i.e. operations supported by it?

Binary Search Tree — What is it?

LagfF ¥ - Each node:
TeU® « stores a key (k)
* has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

For any node,

e
kvl(() ,"‘-"Ism Keys in node’s left subtree < Node's key
T L,a V4 kz‘] (.[_) (IQ_U’) Node’s key < Keys in node’s right subtree
L

Do the keys have to be integers?

Which of the following is/are a binary search tree?

™ no- & biwady ey

e
BSTs allow efficient search!

Start at the root;

Trace down a path by comparing k with the key of the
current node X:

- If the keys are equal: we have found the key
- If k <key[x] search in the left subtree of x

- If k> key[x] search in the right subtree of x

32 | w Ez \\(Y] E°)

Search for 41, then search for 53
o=

&=\

e , 0, 4r, 22, 1%

ook (__D oo \,@\
&

©
42 , 12, 3% g0 ,US

I

5 @

Insert *Insert 40

e - Search for the key
e e - Insert at the spot you expected to find it

Which of the following described the algorithm to
find the maximum value in the BST?

A. Return the root node’s value

&

@ Follow right child pointers from the root, until a node
ith no right child is encountered, return that node’s key

*)

C. Follow left child pointers from the root, until a node
with no left child is encountered, return that node’s key

T rwin
i

rd

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

class BSTNode { BCT l\“O& ufeb\i'

public:
BSTNode* left;
BSTNode* right; datar
BSTNode* parent;
int const data;

le&F
BSTNode (1int d) : data(d) { (b
left = right = parent = nullptr;
}
}i

punt Droar (SO ———
p(?
pacts oo L

®
\@ 1@ iy T @en 90)

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)

l 2. Visit the root.
| @ e 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Path — a sequence of (zero or more) connected nodes.

Length of a path - number of edges traversed on the path

Height of node — Length of the longest path from the node to a leaf node.
Height of the tree - Length of the longest path from the root to a leaf node.

o

@ @ YS
QUL
@@@ > ©
feiwe = \@ Reigie = -

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

Write a member function for the BST ADT to compute its height

