BINARY SEARCH TREES - PART 2

Problem Solving with Computers-l| C l '
aos“eaxd:
© waﬂ‘:}.\“ Az T2 =



Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements In order
Preorder,
Post order




Predecessor: Next smallest element

int bst::predecessor(BSTNodex n, int value) const{
if('n) return std::numeric_limits<int>::min();
if(n—>left){
//Case 1

a @ return :
telse{
e I //Case 2

}
(=) !
Fill in the blank for case 1 using min/max helper functions
- What is the predecessor of 327 g" rr;;:}?)‘t
- What is the predecessor of 457? C.max(n)
D.min(n->left)
E.max(n->1left)



Successor: Next largest element

e - What is the successor of 457
- What is the successor of 507

e @ - What is the successor of 60?



Delete: Case 1 - Node is a leaf node
e * Set parent’s (left/right) child pointer to null

- Delete the node

® o @



Delete: Case 2 - Node has only one child

@ * Replace the node by its only child

® o @



Delete: Case 3 - Node has two children

@ - Can we still replace the node by one of its

children? Why or Why not?

® o @



In order traversal: print elements in sorted order

@ Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
a e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)



Pre-order traversal: nice way to linearize your tree!

@ Algorithm Preorder(tree)
1. Visit the root.
@ e 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)



Post-order traversal: use to recursively clear the tree!

@ Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.



Write a member function for the BST ADT to compute its height

|

- How confident are you about your solution and overall approach?
A. Not at all

B. Somewhat confident

C. Very confident



Practice problem

- https://leetcode.com/problems/kth-smallest-element-in-a-bst/
description/

Input:tree on the right, k = 3
Output: 3

Constraints:
* The number of nodes in the tree is n.
el <= k <= n <= 10™4
* @ <= Node.val <= 104




