

BINARY SEARCH TREES - PART 2

Problem Solving with Computers-II

Define the BST ADT

42

32

12

45

41 50

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements In order
 Preorder,
 Post order

3

Predecessor: Next smallest element

42

32

23

45
20

50

• What is the predecessor of 32?
• What is the predecessor of 45?

int bst::predecessor(BSTNode* n, int value) const{
 if(!n) return std::numeric_limits<int>::min();
 if(n->left){
 //Case 1

 return ________________________;

 }else{
 //Case 2

 }
}

Fill in the blank for case 1 using min/max helper functions
A.n->left;
B.min(n)
C.max(n)
D.min(n->left)
E.max(n->left)

4

Successor: Next largest element
42

32

23

4520

50

• What is the successor of 45?
• What is the successor of 50?
• What is the successor of 60?

48

80

70

60

90

5

Delete: Case 1 - Node is a leaf node
• Set parent’s (left/right) child pointer to null
• Delete the node

42

32

23

4520

50

48

80

70

60

90

6

Delete: Case 2 - Node has only one child
• Replace the node by its only child

42

32

23

4520

50

48

80

70

60

90

7

Delete: Case 3 - Node has two children
• Can we still replace the node by one of its

children? Why or Why not?42

32

23

4520

50

48

80

70

60

90

8

In order traversal: print elements in sorted order

42

32

12

45

41 50

Algorithm Inorder(tree)
 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
 2. Visit the root.
 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

9

Pre-order traversal: nice way to linearize your tree!

42

32

12

45

41 50

Algorithm Preorder(tree)
 1. Visit the root.
 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

10

Post-order traversal: use to recursively clear the tree!

42

32

12

45

41 50

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

Write a member function for the BST ADT to compute its height

42

32

12

32

4212

32

12

32

• How confident are you about your solution and overall approach?
A. Not at all
B. Somewhat confident
C. Very confident

Practice problem
• https://leetcode.com/problems/kth-smallest-element-in-a-bst/

description/

Input:tree on the right, k = 3
Output: 3

Constraints:
• The number of nodes in the tree is n.
• 1 <= k <= n <= 10^4
• 0 <= Node.val <= 10^4
•

