
 
RUNNING TIME ANALYSIS
Problem Solving with Computers-II

 



Problem: Fibonacci Numbers

Definition: 
The Fibonacci numbers are the sequence 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55,… 
Defined by 
F0 = F1 = 1 
Fn = Fn-1 + Fn-2 for n ≥ 2 

Problem: Given n, compute Fn.

Credit: Prof. Daniel Kane, UCSD



Which implementation is significantly faster ?

F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for i = 2 : n 
      A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

A.

F(int n){ 
   if(n <= 1) return 1 
   return F(n-1) + F(n-2) 
}

B. 

C. Both are almost equally fast

The “right” question is: How does the running time grow? 
E.g. How long does it take to compute F(200) recursively? 
….let’s say on….a supercomputer that can compute 40 trillion operations per sec



 It will take  approximately 292 seconds to compute F200. 

Time in seconds  Interpretation 
 210      17 minutes 

 220    12 days 

 230    32 years 

 240    35000 years  
                                                  (cave paintings) 
   

  250                                                                  35 million years ago  
                                                    

  270                                                              Big Bang  

How long does it take to compute Fib(200) recursively? 
….let’s say on…. a supercomputer that runs 40 trillion operations per second



Why So Slow?

Too many recursive calls.
F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(0)F(1)F(0)F(1)F(1)F(2)

F(1) F(0)

Credit: Prof. Daniel Kane, UCSD



F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for i = 2 : n 
     A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

Improved Algorithm

2 lines

2(n-1) lines

1 line
T(n) = 2n+1

Credit: Prof. Daniel Kane, UCSD

Lets compute T(n) = number of lines of code F(n) needs to execute. 



F(int n){ 
    Initialize A[0 . . . n] 
    A[0] = A[1] = 1 
     
    for i = 2 : n 
     A[i] = A[i-1] + A[i-2] 
     
    return A[n] 
}

Question: Runtime

Credit: Prof. Daniel Kane, UCSD

Is T(n) = 2n+ 1 an accurate description of this algorithm?  A. Yes.  B. No 



Bottom Line
What we really care about is how long it takes program to run on 

a real machine. 
Unfortunately, this depends on: 
• CPU speed 
• Memory architecture 
• Compiler optimizations 
• Background processes 
Too much to consider for every analysis

Credit: Prof. Daniel Kane, UCSD



Goal 1: Focus on the impact of the algorithm:  
Simplify the analysis of running time by ignoring “details” which may 
be an artifact of the underlying implementation

Analysis Approach



• Every computer can do some primitive operations in constant time: 
• Data movement (assignment) 

• Control statements (branch, function call, return) 

• Arithmetic and logical operations 

• By inspecting the pseudo-code, we can count the number of 
primitive operations executed by an algorithm

Goal 1: Focus on the impact of the algorithm:  
Count operations instead of absolute time!

Analysis Approach



Goal 1: Focus on the impact of the algorithm:  
Simplify the analysis of running time by ignoring “details” which may 
be an artifact of the underlying implementation 

Goal 2: Focus on trends as input size increases:  
How does the running time of an algorithm increases with the size of 
the input in the limit (for large input sizes)

 Analysis Approach

Count operations instead of absolute time!

Describe asymptotic behavior using well known (growth) functions  



Orders of growth
An order of growth is a set of 
functions whose asymptotic growth 
behavior is considered equivalent.  
For example, 2n, 100n and n+1 
belong to the same order of growth 

Which of the following functions 
has a higher order of growth? 

A. 50n 

B. 2n2



Big-O notation
• Big-O notation provides an upper bound on the order of growth of a function 





Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant c > 0  and k > 0 such that 
 f(n) ≤ c · g(n) for all n >= k. 

f = O(g)  
means that “f grows no faster than g”



Express in Big-O notation
1. 10000000  
2. 3*n      
3. 6*n-2      
4. 15*n + 44 
5. 50*n*log(n) 
6. n2     
7. n2-6n+9   
8. 3n2+4*log(n)+1000 
9. 3n + n3  +log(3*n)

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules 
1. Multiplicative constants can be omitted: 

14n2 becomes n2 .  

2. na dominates nb if a > b: for instance, n2 
dominates n.  

3. Any exponential dominates any polynomial: 
3n dominates n5 (it even dominates 2n ).



procedure max(a1,a2, … an: integers) 

   max:= a1 

     for i:= 2 to n 

  if max < ai  
max:= x 

return max{max is the greatest element}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the above

What is the Big-O running time of max?



What is the Big O running time of sum()?
/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
     int result = 0;   
     for(int i = 0; i < n; i+=2)     
           result+=arr[i];   
     return result; 
} A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 
E. None of the above



What is the Big O running time of sum()?
/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
      int result = 0;  
      for(int i = 1; i < n; i=i*2)     
              result+=2*arr[i];   
       return result; 
} A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 
E. None of the above





What is the Big O running time of sum()?
/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
       int result = 0; 
       for(int i = 0; i < n; i = i+2)     
              result+=arr[i];   
       for(int i = 1; i < n; i =i*2)     
              result+=2*arr[i];   
       return result; 
}

A. O(n2) 
B. O(n) 
C. O(n/2) 
D. O(log n) 
E. None of the above



What is the Big O running time of foo()?
int foo(int n){ 
 int result = 0; 
 for (int i = 1; i <= 100; i++) { 
    for (int j = 1; j <= n; j = 2*j) { 
        result+= i + j; 
    } 
 } 
 return result; 
}

A. O(n2) 

B. O(n) 
C. O(n log n) 
D. O(log n) 

E. None of the above



Next time
• Running time analysis : best case and worst case 
• Running time analysis of Binary Search Trees

Credits and references: 
  
Slides by Professors Sanjoy Das Gupta and Daniel Kane at UCSD 
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf 

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

