

RUNNING TIME ANALYSIS
Problem Solving with Computers-II

Problem: Fibonacci Numbers

Definition:
The Fibonacci numbers are the sequence
1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…
Defined by
F0 = F1 = 1
Fn = Fn-1 + Fn-2 for n ≥ 2

Problem: Given n, compute Fn.

Credit: Prof. Daniel Kane, UCSD

Which implementation is significantly faster ?

F(int n){
 Initialize A[0 . . . n]
 A[0] = A[1] = 1

 for i = 2 : n
 A[i] = A[i-1] + A[i-2]

 return A[n]
}

A.

F(int n){
 if(n <= 1) return 1
 return F(n-1) + F(n-2)
}

B.

C. Both are almost equally fast

The “right” question is: How does the running time grow?
E.g. How long does it take to compute F(200) recursively?
….let’s say on….a supercomputer that can compute 40 trillion operations per sec

 It will take approximately 292 seconds to compute F200.

Time in seconds Interpretation
 210 17 minutes

 220 12 days

 230 32 years

 240 35000 years
 (cave paintings)

 250 35 million years ago

 270 Big Bang

How long does it take to compute Fib(200) recursively?
….let’s say on…. a supercomputer that runs 40 trillion operations per second

Why So Slow?

Too many recursive calls.
F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(0)F(1)F(0)F(1)F(1)F(2)

F(1) F(0)

Credit: Prof. Daniel Kane, UCSD

F(int n){
 Initialize A[0 . . . n]
 A[0] = A[1] = 1

 for i = 2 : n
 A[i] = A[i-1] + A[i-2]

 return A[n]
}

Improved Algorithm

2 lines

2(n-1) lines

1 line
T(n) = 2n+1

Credit: Prof. Daniel Kane, UCSD

Lets compute T(n) = number of lines of code F(n) needs to execute.

F(int n){
 Initialize A[0 . . . n]
 A[0] = A[1] = 1

 for i = 2 : n
 A[i] = A[i-1] + A[i-2]

 return A[n]
}

Question: Runtime

Credit: Prof. Daniel Kane, UCSD

Is T(n) = 2n+ 1 an accurate description of this algorithm? A. Yes. B. No

Bottom Line
What we really care about is how long it takes program to run on

a real machine.
Unfortunately, this depends on:
• CPU speed
• Memory architecture
• Compiler optimizations
• Background processes
Too much to consider for every analysis

Credit: Prof. Daniel Kane, UCSD

Goal 1: Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation

Analysis Approach

• Every computer can do some primitive operations in constant time:
• Data movement (assignment)

• Control statements (branch, function call, return)

• Arithmetic and logical operations

• By inspecting the pseudo-code, we can count the number of
primitive operations executed by an algorithm

Goal 1: Focus on the impact of the algorithm:
Count operations instead of absolute time!

Analysis Approach

Goal 1: Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation

Goal 2: Focus on trends as input size increases:
How does the running time of an algorithm increases with the size of
the input in the limit (for large input sizes)

 Analysis Approach

Count operations instead of absolute time!

Describe asymptotic behavior using well known (growth) functions

Orders of growth
An order of growth is a set of
functions whose asymptotic growth
behavior is considered equivalent.
For example, 2n, 100n and n+1
belong to the same order of growth

Which of the following functions
has a higher order of growth?

A. 50n

B. 2n2

Big-O notation
• Big-O notation provides an upper bound on the order of growth of a function

Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant c > 0 and k > 0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g)
means that “f grows no faster than g”

Express in Big-O notation
1. 10000000
2. 3*n
3. 6*n-2
4. 15*n + 44
5. 50*n*log(n)
6. n2
7. n2-6n+9
8. 3n2+4*log(n)+1000
9. 3n + n3 +log(3*n)

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules
1. Multiplicative constants can be omitted:

14n2 becomes n2 .

2. na dominates nb if a > b: for instance, n2
dominates n.

3. Any exponential dominates any polynomial:
3n dominates n5 (it even dominates 2n).

procedure max(a1,a2, … an: integers)

 max:= a1

 for i:= 2 to n

 if max < ai
max:= x

return max{max is the greatest element}

A. O(n2)

B. O(n)
C. O(n/2)
D. O(log n)

E. None of the above

What is the Big-O running time of max?

What is the Big O running time of sum()?
/* n is the length of the array*/
int sum(int arr[], int n)
{
 int result = 0;
 for(int i = 0; i < n; i+=2)
 result+=arr[i];
 return result;
} A. O(n2)

B. O(n)
C. O(n/2)
D. O(log n)
E. None of the above

What is the Big O running time of sum()?
/* n is the length of the array*/
int sum(int arr[], int n)
{
 int result = 0;
 for(int i = 1; i < n; i=i*2)
 result+=2*arr[i];
 return result;
} A. O(n2)

B. O(n)
C. O(n/2)
D. O(log n)
E. None of the above

What is the Big O running time of sum()?
/* n is the length of the array*/
int sum(int arr[], int n)
{
 int result = 0;
 for(int i = 0; i < n; i = i+2)
 result+=arr[i];
 for(int i = 1; i < n; i =i*2)
 result+=2*arr[i];
 return result;
}

A. O(n2)
B. O(n)
C. O(n/2)
D. O(log n)
E. None of the above

What is the Big O running time of foo()?
int foo(int n){
 int result = 0;
 for (int i = 1; i <= 100; i++) {
 for (int j = 1; j <= n; j = 2*j) {
 result+= i + j;
 }
 }
 return result;
}

A. O(n2)

B. O(n)
C. O(n log n)
D. O(log n)

E. None of the above

Next time
• Running time analysis : best case and worst case
• Running time analysis of Binary Search Trees

Credits and references:

Slides by Professors Sanjoy Das Gupta and Daniel Kane at UCSD
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

