STACK

Problem Solving with Computers-II

Results for Santa Barbara, CA ·

https://leetcode.com/problems/daily-temperatures/

A stack is like a chisel — simple, yet powerful!

stack<int> s

Empty stack

stack<int> s s.push(70)

stack<int> s
s.push(70)
s.push(50)

stack<int> s

s.push(70)

s.push(50)

s.push(80)

stack<int> s s.push(70) s.push(50) s.push(80)

s.top() returns 80

stack<int> s
s.push(70)
s.push(50)
s.push(80)

s.top()

s.pop() removes value that was pushed in last

stack<int> s

s.push(70)

s.push(50)

s.push(80)

s.top()

s.pop() removes value that was pushed in last

The Last value In is the First value Out (LIFO)

```
Stack
   #include <iostream>
                                               The call stack:
                                                                   main
   using namespace std;
                                                                   fact(int)
   int fact(int n){
    if(n <= 1) return 1;
   return n * fact(n - 1);
                                                                   fact(int)
    int main() {
    cout<< fact(4) << endl;</pre>
10
     return 0;
                                                                   fact(int)
12 }
```

The Last value In is the First value Out (LIFO)

fact(int)
n lint
1

list

Empty stack

list

list

s.push(50)

list

70 50 80

The top element is at **index**:

- A. zero
- B. one
- C. v.size() 1
- D. v.size()

Why implement a stack at all? After all a stack is a vector or list with a reduced set of operations

Stack has only three operations: push() pop() top()

If we parse the temperatures from right to left, which day(s) should we remember to compute the answer for Day 4 (Thu)?

- A. Day 5 because its the most recent day after Day 5
- B. Day 6 because its the most recent warm day after Day 4
- C. Day 7 because its warmest day after Day 4
- D. Day 3 because Day 4 is warmer than Day 3

If we parse the temperatures from right to left, every day we encounter could be a potential answer (for some preceding day) — **remember potential answers in a stack!**

However, some values become stale (i.e. they are no longer a potential answer) How can we detect stale values in the stack and permanently remove them?

- Attempt a different solution to this problem on leetcode
- Spend no more than 30 minutes on it
- Discuss your solutions with the course staff in office hours

A stack is useful for keeping track of history information where computation only depends on the most recent information!! https://leetcode.com/problems/daily-temperatures/